ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2301.11145
  4. Cited By
Learning from Mistakes: Self-Regularizing Hierarchical Representations
  in Point Cloud Semantic Segmentation

Learning from Mistakes: Self-Regularizing Hierarchical Representations in Point Cloud Semantic Segmentation

26 January 2023
Elena Camuffo
Umberto Michieli
Simone Milani
    3DPC
ArXivPDFHTML

Papers citing "Learning from Mistakes: Self-Regularizing Hierarchical Representations in Point Cloud Semantic Segmentation"

7 / 7 papers shown
Title
Enhanced Model Robustness to Input Corruptions by Per-corruption
  Adaptation of Normalization Statistics
Enhanced Model Robustness to Input Corruptions by Per-corruption Adaptation of Normalization Statistics
Elena Camuffo
Umberto Michieli
Simone Milani
J. Moon
Mete Ozay
33
0
0
08 Jul 2024
Continual Learning for LiDAR Semantic Segmentation: Class-Incremental
  and Coarse-to-Fine strategies on Sparse Data
Continual Learning for LiDAR Semantic Segmentation: Class-Incremental and Coarse-to-Fine strategies on Sparse Data
Elena Camuffo
Simone Milani
3DPC
CLL
13
8
0
08 Apr 2023
PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences
PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences
Hehe Fan
Xin Yu
Yuhang Ding
Yi Yang
Mohan S. Kankanhalli
3DPC
112
108
0
27 May 2022
LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
  Permutohedral Lattices
LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using Permutohedral Lattices
R. Rosu
Peer Schütt
Jan Quenzel
Sven Behnke
3DPC
31
32
0
09 Aug 2021
FPS-Net: A Convolutional Fusion Network for Large-Scale LiDAR Point
  Cloud Segmentation
FPS-Net: A Convolutional Fusion Network for Large-Scale LiDAR Point Cloud Segmentation
Aoran Xiao
Xiaofei Yang
Shijian Lu
Dayan Guan
Jiaxing Huang
3DPC
19
47
0
01 Mar 2021
Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks
Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks
Kirill Mazur
Victor Lempitsky
3DPC
40
39
0
22 Jul 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
210
13,886
0
02 Dec 2016
1