ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01002
  4. Cited By
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning

Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning

2 February 2023
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
ArXivPDFHTML

Papers citing "Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning"

3 / 3 papers shown
Title
NTK-Guided Few-Shot Class Incremental Learning
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
Yunlong Yu
CLL
19
0
0
19 Mar 2024
Posterior Inference on Shallow Infinitely Wide Bayesian Neural Networks
  under Weights with Unbounded Variance
Posterior Inference on Shallow Infinitely Wide Bayesian Neural Networks under Weights with Unbounded Variance
Jorge Loría
A. Bhadra
UQCV
BDL
11
1
0
18 May 2023
Deep neural networks with dependent weights: Gaussian Process mixture
  limit, heavy tails, sparsity and compressibility
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
17
8
0
17 May 2022
1