ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01425
  4. Cited By
Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

2 February 2023
Michael E. Sander
J. Puigcerver
Josip Djolonga
Gabriel Peyré
Mathieu Blondel
ArXivPDFHTML

Papers citing "Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective"

13 / 13 papers shown
Title
Learning Cascade Ranking as One Network
Yunli Wang
Z. Zhang
Z. Wang
Z. Yang
Y. Li
Jian Yang
Shiyang Wen
Peng Jiang
Kun Gai
49
0
0
13 Mar 2025
LapSum -- One Method to Differentiate Them All: Ranking, Sorting and Top-k Selection
Łukasz Struski
Michał B. Bednarczyk
Igor T. Podolak
Jacek Tabor
BDL
55
0
0
08 Mar 2025
Decision-aware training of spatiotemporal forecasting models to select a top K subset of sites for intervention
Kyle Heuton
F. Samuel Muench
Shikhar Shrestha
Thomas J. Stopka
Michael C. Hughes
OffRL
64
0
0
07 Mar 2025
Universal generalization guarantees for Wasserstein distributionally robust models
Universal generalization guarantees for Wasserstein distributionally robust models
Tam Le
Jérome Malick
OOD
35
1
0
28 Jan 2025
Soft Condorcet Optimization for Ranking of General Agents
Soft Condorcet Optimization for Ranking of General Agents
Marc Lanctot
Kate Larson
Michael Kaisers
Quentin Berthet
I. Gemp
Manfred Diaz
Roberto-Rafael Maura-Rivero
Yoram Bachrach
Anna Koop
Doina Precup
30
0
0
31 Oct 2024
Generalizing Stochastic Smoothing for Differentiation and Gradient
  Estimation
Generalizing Stochastic Smoothing for Differentiation and Gradient Estimation
Felix Petersen
Christian Borgelt
Aashwin Mishra
Stefano Ermon
21
1
0
10 Oct 2024
Separate, Dynamic and Differentiable (SMART) Pruner for Block/Output
  Channel Pruning on Computer Vision Tasks
Separate, Dynamic and Differentiable (SMART) Pruner for Block/Output Channel Pruning on Computer Vision Tasks
Guanhua Ding
Zexi Ye
Zhen Zhong
Gang Li
David Shao
26
0
0
29 Mar 2024
Routers in Vision Mixture of Experts: An Empirical Study
Routers in Vision Mixture of Experts: An Empirical Study
Tianlin Liu
Mathieu Blondel
C. Riquelme
J. Puigcerver
MoE
29
3
0
29 Jan 2024
A path-norm toolkit for modern networks: consequences, promises and
  challenges
A path-norm toolkit for modern networks: consequences, promises and challenges
Antoine Gonon
Nicolas Brisebarre
E. Riccietti
Rémi Gribonval
13
6
0
02 Oct 2023
Differentiable Clustering with Perturbed Spanning Forests
Differentiable Clustering with Perturbed Spanning Forests
Lawrence Stewart
Francis R. Bach
Felipe Llinares-López
Quentin Berthet
21
8
0
25 May 2023
High-Similarity-Pass Attention for Single Image Super-Resolution
High-Similarity-Pass Attention for Single Image Super-Resolution
Jianmei Su
Min Gan
Ieee Guang-Yong Chen Senior Member
Wenzhong Guo
F. I. C. L. Philip Chen
19
16
0
25 May 2023
Mixture-of-Experts with Expert Choice Routing
Mixture-of-Experts with Expert Choice Routing
Yan-Quan Zhou
Tao Lei
Han-Chu Liu
Nan Du
Yanping Huang
Vincent Zhao
Andrew M. Dai
Zhifeng Chen
Quoc V. Le
James Laudon
MoE
147
323
0
18 Feb 2022
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
175
1,018
0
06 Mar 2020
1