Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.01428
Cited By
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
2 February 2023
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation"
10 / 10 papers shown
Title
FairDD: Fair Dataset Distillation via Synchronized Matching
Qihang Zhou
Shenhao Fang
Shibo He
Wenchao Meng
Jiming Chen
FedML
DD
72
1
0
29 Nov 2024
Slowing Down Forgetting in Continual Learning
Pascal Janetzky
Tobias Schlagenhauf
Stefan Feuerriegel
CLL
19
0
0
11 Nov 2024
Not All Samples Should Be Utilized Equally: Towards Understanding and Improving Dataset Distillation
Shaobo Wang
Yantai Yang
Qilong Wang
Kaixin Li
Linfeng Zhang
Junchi Yan
DD
28
4
0
22 Aug 2024
State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey
Chaoyu Zhang
Shaoyu Li
AILaw
37
3
0
25 Feb 2024
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
14
4
0
20 May 2023
Efficient Dataset Distillation Using Random Feature Approximation
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
DD
64
95
0
21 Oct 2022
A Kernel-Based View of Language Model Fine-Tuning
Sadhika Malladi
Alexander Wettig
Dingli Yu
Danqi Chen
Sanjeev Arora
VLM
66
60
0
11 Oct 2022
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
189
288
0
16 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,798
0
14 Dec 2020
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
245
80
0
11 Dec 2020
1