ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.01622
  4. Cited By
Private, fair and accurate: Training large-scale, privacy-preserving AI
  models in medical imaging

Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging

3 February 2023
Soroosh Tayebi Arasteh
Alexander Ziller
Christiane Kuhl
Marcus R. Makowski
S. Nebelung
R. Braren
Daniel Rueckert
Daniel Truhn
Georgios Kaissis
    MedIm
ArXivPDFHTML

Papers citing "Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging"

12 / 12 papers shown
Title
Perceptual Implications of Automatic Anonymization in Pathological Speech
Perceptual Implications of Automatic Anonymization in Pathological Speech
Soroosh Tayebi Arasteh
Saba Afza
Tri-Thien Nguyen
Lukas Buess
Maryam Parvin
...
Thomas Gorges
E. Noeth
Maria Schuster
S. Yang
Andreas K. Maier
22
0
0
01 May 2025
Boosting multi-demographic federated learning for chest x-ray analysis using general-purpose self-supervised representations
Boosting multi-demographic federated learning for chest x-ray analysis using general-purpose self-supervised representations
Mahshad Lotfinia
Arash Tayebiarasteh
Samaneh Samiei
Mehdi Joodaki
Soroosh Tayebi Arasteh
28
0
0
11 Apr 2025
The Impact of Speech Anonymization on Pathology and Its Limits
The Impact of Speech Anonymization on Pathology and Its Limits
Soroosh Tayebi Arasteh
T. Arias-Vergara
Paula Andrea Pérez-Toro
Tobias Weise
Kai Packhaeuser
Maria Schuster
E. Noeth
Andreas K. Maier
Seung Hee Yang
36
2
0
11 Apr 2024
Unlocking Accuracy and Fairness in Differentially Private Image
  Classification
Unlocking Accuracy and Fairness in Differentially Private Image Classification
Leonard Berrada
Soham De
J. Shen
Jamie Hayes
Robert Stanforth
David Stutz
Pushmeet Kohli
Samuel L. Smith
Borja Balle
19
13
0
21 Aug 2023
Enhancing Network Initialization for Medical AI Models Using
  Large-Scale, Unlabeled Natural Images
Enhancing Network Initialization for Medical AI Models Using Large-Scale, Unlabeled Natural Images
Soroosh Tayebi Arasteh
Leo Misera
Jakob Nikolas Kather
Daniel Truhn
S. Nebelung
23
8
0
15 Aug 2023
Preserving privacy in domain transfer of medical AI models comes at no
  performance costs: The integral role of differential privacy
Preserving privacy in domain transfer of medical AI models comes at no performance costs: The integral role of differential privacy
Soroosh Tayebi Arasteh
Mahshad Lotfinia
T. Nolte
Marwin Saehn
P. Isfort
Christiane Kuhl
S. Nebelung
Georgios Kaissis
Daniel Truhn
MedIm
11
8
0
10 Jun 2023
Federated learning for secure development of AI models for Parkinson's
  disease detection using speech from different languages
Federated learning for secure development of AI models for Parkinson's disease detection using speech from different languages
Soroosh Tayebi Arasteh
C. D. Ríos-Urrego
E. Noeth
Andreas K. Maier
Seung Hee Yang
J. Rusz
J. Orozco-Arroyave
FedML
23
13
0
18 May 2023
GARDNet: Robust Multi-View Network for Glaucoma Classification in Color
  Fundus Images
GARDNet: Robust Multi-View Network for Glaucoma Classification in Color Fundus Images
Ahmed Al Mahrooqi
Dmitrii Medvedev
Rand Muhtaseb
Mohammad Yaqub
25
6
0
25 May 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
64
181
0
06 Dec 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
348
0
25 Sep 2021
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
294
4,187
0
23 Aug 2019
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,237
0
25 Aug 2016
1