ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02596
  4. Cited By
Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook
  for Sparse Neural Network Researchers

Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook for Sparse Neural Network Researchers

6 February 2023
Shiwei Liu
Zhangyang Wang
ArXivPDFHTML

Papers citing "Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook for Sparse Neural Network Researchers"

32 / 32 papers shown
Title
E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation
E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation
Boqian Wu
Q. Xiao
Shiwei Liu
Lu Yin
Mykola Pechenizkiy
D. Mocanu
M. V. Keulen
Elena Mocanu
MedIm
53
4
0
20 Feb 2025
Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity
Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity
Alessandro Pierro
Steven Abreu
Jonathan Timcheck
Philipp Stratmann
Andreas Wild
S. Shrestha
65
0
0
03 Feb 2025
Navigating Extremes: Dynamic Sparsity in Large Output Spaces
Navigating Extremes: Dynamic Sparsity in Large Output Spaces
Nasib Ullah
Erik Schultheis
Mike Lasby
Yani Andrew Ioannou
Rohit Babbar
33
0
0
05 Nov 2024
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness
Boqian Wu
Q. Xiao
Shunxin Wang
N. Strisciuglio
Mykola Pechenizkiy
M. V. Keulen
D. Mocanu
Elena Mocanu
OOD
3DH
52
0
0
03 Oct 2024
KV Cache Compression, But What Must We Give in Return? A Comprehensive
  Benchmark of Long Context Capable Approaches
KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches
Jiayi Yuan
Hongyi Liu
Shaochen
Zhong
Yu-Neng Chuang
...
Hongye Jin
V. Chaudhary
Zhaozhuo Xu
Zirui Liu
Xia Hu
34
17
0
01 Jul 2024
Sparser, Better, Deeper, Stronger: Improving Sparse Training with Exact
  Orthogonal Initialization
Sparser, Better, Deeper, Stronger: Improving Sparse Training with Exact Orthogonal Initialization
A. Nowak
Lukasz Gniecki
Filip Szatkowski
Jacek Tabor
22
0
0
03 Jun 2024
Importance Estimation with Random Gradient for Neural Network Pruning
Importance Estimation with Random Gradient for Neural Network Pruning
Suman Sapkota
Binod Bhattarai
30
1
0
31 Oct 2023
Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for
  Pruning LLMs to High Sparsity
Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity
Lu Yin
You Wu
Zhenyu (Allen) Zhang
Cheng-Yu Hsieh
Yaqing Wang
...
Mykola Pechenizkiy
Yi Liang
Michael Bendersky
Zhangyang Wang
Shiwei Liu
23
78
0
08 Oct 2023
A Theoretical Explanation of Activation Sparsity through Flat Minima and
  Adversarial Robustness
A Theoretical Explanation of Activation Sparsity through Flat Minima and Adversarial Robustness
Ze Peng
Lei Qi
Yinghuan Shi
Yang Gao
20
3
0
06 Sep 2023
Continual Learning with Dynamic Sparse Training: Exploring Algorithms
  for Effective Model Updates
Continual Learning with Dynamic Sparse Training: Exploring Algorithms for Effective Model Updates
Murat Onur Yildirim
Elif Ceren Gok Yildirim
Ghada Sokar
D. Mocanu
Joaquin Vanschoren
CLL
20
7
0
28 Aug 2023
No Train No Gain: Revisiting Efficient Training Algorithms For
  Transformer-based Language Models
No Train No Gain: Revisiting Efficient Training Algorithms For Transformer-based Language Models
Jean Kaddour
Oscar Key
Piotr Nawrot
Pasquale Minervini
Matt J. Kusner
13
41
0
12 Jul 2023
Neural Network Pruning for Real-time Polyp Segmentation
Neural Network Pruning for Real-time Polyp Segmentation
Suman Sapkota
Pranav Poudel
Sudarshan Regmi
Bibek Panthi
Binod Bhattarai
MedIm
26
0
0
22 Jun 2023
Vision Transformers for Mobile Applications: A Short Survey
Vision Transformers for Mobile Applications: A Short Survey
Nahid Alam
Steven Kolawole
S. Sethi
Nishant Bansali
Karina Nguyen
ViT
16
3
0
30 May 2023
Adaptive Sparsity Level during Training for Efficient Time Series
  Forecasting with Transformers
Adaptive Sparsity Level during Training for Efficient Time Series Forecasting with Transformers
Zahra Atashgahi
Mykola Pechenizkiy
Raymond N. J. Veldhuis
D. Mocanu
AI4TS
AI4CE
24
1
0
28 May 2023
Visual Tuning
Visual Tuning
Bruce X. B. Yu
Jianlong Chang
Haixin Wang
Lin Liu
Shijie Wang
...
Lingxi Xie
Haojie Li
Zhouchen Lin
Qi Tian
Chang Wen Chen
VLM
39
38
0
10 May 2023
JaxPruner: A concise library for sparsity research
JaxPruner: A concise library for sparsity research
Jooyoung Lee
Wonpyo Park
Nicole Mitchell
Jonathan Pilault
J. Obando-Ceron
...
Hong-Seok Kim
Yann N. Dauphin
Karolina Dziugaite
P. S. Castro
Utku Evci
31
14
0
27 Apr 2023
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!
Shiwei Liu
Tianlong Chen
Zhenyu (Allen) Zhang
Xuxi Chen
Tianjin Huang
Ajay Jaiswal
Zhangyang Wang
24
29
0
03 Mar 2023
PIT: Optimization of Dynamic Sparse Deep Learning Models via Permutation
  Invariant Transformation
PIT: Optimization of Dynamic Sparse Deep Learning Models via Permutation Invariant Transformation
Ningxin Zheng
Huiqiang Jiang
Quan Zhang
Zhenhua Han
Yuqing Yang
...
Fan Yang
Chengruidong Zhang
Lili Qiu
Mao Yang
Lidong Zhou
32
26
0
26 Jan 2023
Minimalistic Unsupervised Learning with the Sparse Manifold Transform
Minimalistic Unsupervised Learning with the Sparse Manifold Transform
Yubei Chen
Zeyu Yun
Y. Ma
Bruno A. Olshausen
Yann LeCun
34
8
0
30 Sep 2022
On the Principles of Parsimony and Self-Consistency for the Emergence of
  Intelligence
On the Principles of Parsimony and Self-Consistency for the Emergence of Intelligence
Y. Ma
Doris Y. Tsao
H. Shum
59
75
0
11 Jul 2022
On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks
On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks
Hongru Yang
Zhangyang Wang
MLT
22
8
0
27 Mar 2022
Don't Be So Dense: Sparse-to-Sparse GAN Training Without Sacrificing
  Performance
Don't Be So Dense: Sparse-to-Sparse GAN Training Without Sacrificing Performance
Shiwei Liu
Yuesong Tian
Tianlong Chen
Li Shen
22
8
0
05 Mar 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
77
46
0
20 Feb 2022
Powerpropagation: A sparsity inducing weight reparameterisation
Powerpropagation: A sparsity inducing weight reparameterisation
Jonathan Richard Schwarz
Siddhant M. Jayakumar
Razvan Pascanu
P. Latham
Yee Whye Teh
87
54
0
01 Oct 2021
Carbon Emissions and Large Neural Network Training
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
239
642
0
21 Apr 2021
Truly Sparse Neural Networks at Scale
Truly Sparse Neural Networks at Scale
Selima Curci
D. Mocanu
Mykola Pechenizkiy
18
19
0
02 Feb 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
139
684
0
31 Jan 2021
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
The Lottery Ticket Hypothesis for Pre-trained BERT Networks
Tianlong Chen
Jonathan Frankle
Shiyu Chang
Sijia Liu
Yang Zhang
Zhangyang Wang
Michael Carbin
148
376
0
23 Jul 2020
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
178
1,027
0
06 Mar 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
222
382
0
05 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,453
0
23 Jan 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1