Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.07225
Cited By
Bounding Training Data Reconstruction in DP-SGD
14 February 2023
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bounding Training Data Reconstruction in DP-SGD"
28 / 28 papers shown
Title
Efficient Full-Stack Private Federated Deep Learning with Post-Quantum Security
Yiwei Zhang
R. Behnia
A. Yavuz
Reza Ebrahimi
E. Bertino
FedML
21
0
0
09 May 2025
Empirical Calibration and Metric Differential Privacy in Language Models
Pedro Faustini
Natasha Fernandes
Annabelle McIver
Mark Dras
60
0
0
18 Mar 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
62
0
0
16 Mar 2025
(
ε
,
δ
)
(\varepsilon, δ)
(
ε
,
δ
)
Considered Harmful: Best Practices for Reporting Differential Privacy Guarantees
Juan Felipe Gomez
B. Kulynych
G. Kaissis
Jamie Hayes
Borja Balle
Antti Honkela
51
0
0
13 Mar 2025
Analyzing Inference Privacy Risks Through Gradients in Machine Learning
Zhuohang Li
Andrew Lowy
Jing Liu
T. Koike-Akino
K. Parsons
Bradley Malin
Ye Wang
FedML
23
1
0
29 Aug 2024
Understanding Data Reconstruction Leakage in Federated Learning from a Theoretical Perspective
Zifan Wang
Binghui Zhang
Meng Pang
Yuan Hong
Binghui Wang
FedML
29
0
0
22 Aug 2024
Differentially Private Stochastic Gradient Descent with Fixed-Size Minibatches: Tighter RDP Guarantees with or without Replacement
Jeremiah Birrell
Reza Ebrahimi
R. Behnia
Jason L. Pacheco
23
0
0
19 Aug 2024
Private Collaborative Edge Inference via Over-the-Air Computation
Selim F. Yilmaz
Burak Hasircioglu
Li Qiao
Deniz Gunduz
FedML
48
0
0
30 Jul 2024
Attack-Aware Noise Calibration for Differential Privacy
B. Kulynych
Juan Felipe Gomez
G. Kaissis
Flavio du Pin Calmon
Carmela Troncoso
44
6
0
02 Jul 2024
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy
Georgios Kaissis
Stefan Kolek
Borja Balle
Jamie Hayes
Daniel Rueckert
40
4
0
13 Jun 2024
Data Reconstruction: When You See It and When You Don't
Edith Cohen
Haim Kaplan
Yishay Mansour
Shay Moran
Kobbi Nissim
Uri Stemmer
Eliad Tsfadia
AAML
37
2
0
24 May 2024
ATTAXONOMY: Unpacking Differential Privacy Guarantees Against Practical Adversaries
Rachel Cummings
Shlomi Hod
Jayshree Sarathy
Marika Swanberg
28
2
0
02 May 2024
Improving Robustness to Model Inversion Attacks via Sparse Coding Architectures
S. V. Dibbo
Adam Breuer
Juston S. Moore
Michael Teti
AAML
28
4
0
21 Mar 2024
Visual Privacy Auditing with Diffusion Models
Kristian Schwethelm
Johannes Kaiser
Moritz Knolle
Daniel Rueckert
Daniel Rueckert
Alexander Ziller
DiffM
AAML
31
0
0
12 Mar 2024
Defending Against Data Reconstruction Attacks in Federated Learning: An Information Theory Approach
Qi Tan
Qi Li
Yi Zhao
Zhuotao Liu
Xiaobing Guo
Ke Xu
FedML
29
2
0
02 Mar 2024
Bounding Reconstruction Attack Success of Adversaries Without Data Priors
Alexander Ziller
Anneliese Riess
Kristian Schwethelm
Tamara T. Mueller
Daniel Rueckert
Georgios Kaissis
MIACV
AAML
24
1
0
20 Feb 2024
Why Does Differential Privacy with Large Epsilon Defend Against Practical Membership Inference Attacks?
Andrew Lowy
Zhuohang Li
Jing Liu
T. Koike-Akino
K. Parsons
Ye Wang
11
9
0
14 Feb 2024
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
54
4
0
13 Feb 2024
Reconciling AI Performance and Data Reconstruction Resilience for Medical Imaging
Alexander Ziller
Tamara T. Mueller
Simon Stieger
Leonhard F. Feiner
Johannes Brandt
R. Braren
Daniel Rueckert
Georgios Kaissis
53
1
0
05 Dec 2023
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
9
1
0
06 Nov 2023
Understanding Deep Gradient Leakage via Inversion Influence Functions
Haobo Zhang
Junyuan Hong
Yuyang Deng
M. Mahdavi
Jiayu Zhou
FedML
42
6
0
22 Sep 2023
Unlocking Accuracy and Fairness in Differentially Private Image Classification
Leonard Berrada
Soham De
J. Shen
Jamie Hayes
Robert Stanforth
David Stutz
Pushmeet Kohli
Samuel L. Smith
Borja Balle
19
13
0
21 Aug 2023
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
Georgios Kaissis
Jamie Hayes
Alexander Ziller
Daniel Rueckert
AAML
19
11
0
08 Jul 2023
Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla
Galen Andrew
Peter Kairouz
H. B. McMahan
Alina Oprea
Sewoong Oh
17
20
0
29 May 2023
Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging
Soroosh Tayebi Arasteh
Alexander Ziller
Christiane Kuhl
Marcus R. Makowski
S. Nebelung
R. Braren
Daniel Rueckert
Daniel Truhn
Georgios Kaissis
MedIm
21
17
0
03 Feb 2023
Bounding Training Data Reconstruction in Private (Deep) Learning
Chuan Guo
Brian Karrer
Kamalika Chaudhuri
L. V. D. van der Maaten
103
53
0
28 Jan 2022
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,808
0
14 Dec 2020
Individual Privacy Accounting via a Renyi Filter
Vitaly Feldman
Tijana Zrnic
46
86
0
25 Aug 2020
1