ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.07261
  4. Cited By
Where to Diffuse, How to Diffuse, and How to Get Back: Automated
  Learning for Multivariate Diffusions

Where to Diffuse, How to Diffuse, and How to Get Back: Automated Learning for Multivariate Diffusions

14 February 2023
Raghav Singhal
Mark Goldstein
Rajesh Ranganath
    DiffM
ArXivPDFHTML

Papers citing "Where to Diffuse, How to Diffuse, and How to Get Back: Automated Learning for Multivariate Diffusions"

20 / 20 papers shown
Title
SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations
SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations
Grigory Bartosh
Dmitry Vetrov
C. A. Naesseth
76
0
0
04 Feb 2025
Weak Supervision Dynamic KL-Weighted Diffusion Models Guided by Large Language Models
Weak Supervision Dynamic KL-Weighted Diffusion Models Guided by Large Language Models
Julian Perry
Frank Sanders
Carter Scott
53
0
0
02 Feb 2025
A General Framework for Inference-time Scaling and Steering of Diffusion Models
A General Framework for Inference-time Scaling and Steering of Diffusion Models
R. Singhal
Zachary Horvitz
Ryan Teehan
Mengye Ren
Zhou Yu
Kathleen McKeown
Rajesh Ranganath
DiffM
61
15
0
17 Jan 2025
Contrasting with Symile: Simple Model-Agnostic Representation Learning
  for Unlimited Modalities
Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities
A. Saporta
A. Puli
Mark Goldstein
Rajesh Ranganath
SSL
23
0
0
01 Nov 2024
What's the score? Automated Denoising Score Matching for Nonlinear
  Diffusions
What's the score? Automated Denoising Score Matching for Nonlinear Diffusions
Raghav Singhal
Mark Goldstein
Rajesh Ranganath
DiffM
43
4
0
10 Jul 2024
Variational Flow Matching for Graph Generation
Variational Flow Matching for Graph Generation
Floor Eijkelboom
Grigory Bartosh
C. A. Naesseth
Max Welling
Jan Willem van de Meent
31
10
0
07 Jun 2024
Neural Flow Diffusion Models: Learnable Forward Process for Improved
  Diffusion Modelling
Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling
Grigory Bartosh
Dmitry Vetrov
C. A. Naesseth
DiffM
29
7
0
19 Apr 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
56
17
0
28 Feb 2024
Structure-Guided Adversarial Training of Diffusion Models
Structure-Guided Adversarial Training of Diffusion Models
Ling Yang
Haotian Qian
Zhilong Zhang
Jingwei Liu
Bin Cui
23
10
0
27 Feb 2024
Towards Fast Stochastic Sampling in Diffusion Generative Models
Towards Fast Stochastic Sampling in Diffusion Generative Models
Kushagra Pandey
Maja R. Rudolph
Stephan Mandt
DiffM
25
0
0
11 Feb 2024
SiT: Exploring Flow and Diffusion-based Generative Models with Scalable
  Interpolant Transformers
SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers
Nanye Ma
Mark Goldstein
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
Saining Xie
DiffM
27
163
0
16 Jan 2024
DiffEnc: Variational Diffusion with a Learned Encoder
DiffEnc: Variational Diffusion with a Learned Encoder
Beatrix M. G. Nielsen
Anders Christensen
Andrea Dittadi
Ole Winther
DiffM
11
9
0
30 Oct 2023
Generative Fractional Diffusion Models
Generative Fractional Diffusion Models
Gabriel Nobis
Maximilian Springenberg
Marco Aversa
Michael Detzel
Rembert Daems
...
Tolga Birdal
Manfred Opper
Christoph Knochenhauer
Luis Oala
Wojciech Samek
DiffM
24
5
0
26 Oct 2023
Neural Diffusion Models
Neural Diffusion Models
Grigory Bartosh
Dmitry Vetrov
C. A. Naesseth
DiffM
24
6
0
12 Oct 2023
Efficient Integrators for Diffusion Generative Models
Efficient Integrators for Diffusion Generative Models
Kushagra Pandey
Maja R. Rudolph
Stephan Mandt
DiffM
21
10
0
11 Oct 2023
Stochastic interpolants with data-dependent couplings
Stochastic interpolants with data-dependent couplings
M. S. Albergo
Mark Goldstein
Nicholas M. Boffi
Rajesh Ranganath
Eric Vanden-Eijnden
OT
30
28
0
05 Oct 2023
Learning variational autoencoders via MCMC speed measures
Learning variational autoencoders via MCMC speed measures
Marcel Hirt
Vasileios Kreouzis
P. Dellaportas
BDL
DRL
13
2
0
26 Aug 2023
Protein Design with Guided Discrete Diffusion
Protein Design with Guided Discrete Diffusion
Nate Gruver
Samuel Stanton
Nathan C. Frey
Tim G. J. Rudner
I. Hotzel
J. Lafrance-Vanasse
A. Rajpal
Kyunghyun Cho
A. Wilson
DiffM
24
100
0
31 May 2023
A Complete Recipe for Diffusion Generative Models
A Complete Recipe for Diffusion Generative Models
Kushagra Pandey
Stephan Mandt
DiffM
41
8
0
03 Mar 2023
A Continuous Time Framework for Discrete Denoising Models
A Continuous Time Framework for Discrete Denoising Models
Andrew Campbell
Joe Benton
Valentin De Bortoli
Tom Rainforth
George Deligiannidis
Arnaud Doucet
DiffM
183
134
0
30 May 2022
1