ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.08436
  4. Cited By
Trieste: Efficiently Exploring The Depths of Black-box Functions with
  TensorFlow

Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow

16 February 2023
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
Sebastian W. Ober
A. Artemev
Khurram Ghani
Alexander Goodall
Andrei Paleyes
Sattar Vakili
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
ArXivPDFHTML

Papers citing "Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow"

2 / 2 papers shown
Title
Surrogate-based optimization of system architectures subject to hidden constraints
Surrogate-based optimization of system architectures subject to hidden constraints
J. Bussemaker
P. Saves
N. Bartoli
T. Lefebvre
Björn Nagel
AI4CE
54
2
0
11 Apr 2025
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,635
0
05 Dec 2016
1