ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.10975
  4. Cited By
Improved uncertainty quantification for neural networks with Bayesian
  last layer

Improved uncertainty quantification for neural networks with Bayesian last layer

21 February 2023
F. Fiedler
S. Lucia
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Improved uncertainty quantification for neural networks with Bayesian last layer"

3 / 3 papers shown
Title
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Uncertainty Quantification and Propagation in Surrogate-based Bayesian Inference
Philipp Reiser
Javier Enrique Aguilar
A. Guthke
Paul-Christian Burkner
31
0
0
08 Dec 2023
Learning in High Dimension Always Amounts to Extrapolation
Learning in High Dimension Always Amounts to Extrapolation
Randall Balestriero
J. Pesenti
Yann LeCun
28
87
0
18 Oct 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1