ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.11556
  4. Cited By
Equivariant Polynomials for Graph Neural Networks

Equivariant Polynomials for Graph Neural Networks

22 February 2023
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
ArXivPDFHTML

Papers citing "Equivariant Polynomials for Graph Neural Networks"

29 / 29 papers shown
Title
TeleLoRA: Teleporting Model-Specific Alignment Across LLMs
TeleLoRA: Teleporting Model-Specific Alignment Across LLMs
Xiao Lin
Manoj Acharya
Anirban Roy
Susmit Jha
MoMe
68
0
0
26 Mar 2025
Permutation Equivariant Neural Networks for Symmetric Tensors
Edward Pearce-Crump
46
0
0
14 Mar 2025
TRIX: A More Expressive Model for Zero-shot Domain Transfer in Knowledge Graphs
TRIX: A More Expressive Model for Zero-shot Domain Transfer in Knowledge Graphs
Yucheng Zhang
Beatrice Bevilacqua
Mikhail Galkin
Bruno Ribeiro
56
1
0
26 Feb 2025
Do Graph Diffusion Models Accurately Capture and Generate Substructure Distributions?
Do Graph Diffusion Models Accurately Capture and Generate Substructure Distributions?
X. Wang
Y. Liu
Lexi Pang
Siwei Chen
Muhan Zhang
DiffM
89
0
0
04 Feb 2025
$SE(3)$ Equivariant Ray Embeddings for Implicit Multi-View Depth
  Estimation
SE(3)SE(3)SE(3) Equivariant Ray Embeddings for Implicit Multi-View Depth Estimation
Yinshuang Xu
Dian Chen
Katherine Liu
Sergey Zakharov
Rares Ambrus
Kostas Daniilidis
Vitor Campagnolo Guizilini
MDE
24
0
0
11 Nov 2024
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
Pau Ferrer-Cid
Jose M. Barcelo-Ordinas
J. García-Vidal
37
2
0
28 Oct 2024
Sequential Signal Mixing Aggregation for Message Passing Graph Neural
  Networks
Sequential Signal Mixing Aggregation for Message Passing Graph Neural Networks
Mitchell Keren Taraday
Almog David
Chaim Baskin
26
0
0
28 Sep 2024
What Ails Generative Structure-based Drug Design: Expressivity is Too Little or Too Much?
What Ails Generative Structure-based Drug Design: Expressivity is Too Little or Too Much?
Rafał Karczewski
Samuel Kaski
Markus Heinonen
Vikas K. Garg
27
0
0
12 Aug 2024
Foundations and Frontiers of Graph Learning Theory
Foundations and Frontiers of Graph Learning Theory
Yu Huang
Min Zhou
Menglin Yang
Zhen Wang
Muhan Zhang
Jie Wang
Hong Xie
Hao Wang
Defu Lian
Enhong Chen
AI4CE
GNN
43
2
0
03 Jul 2024
DiGRAF: Diffeomorphic Graph-Adaptive Activation Function
DiGRAF: Diffeomorphic Graph-Adaptive Activation Function
Krishna Sri Ipsit Mantri
Xinzhi Wang
Carola-Bibiane Schönlieb
Bruno Ribeiro
Beatrice Bevilacqua
Moshe Eliasof
GNN
41
1
0
02 Jul 2024
Separation Power of Equivariant Neural Networks
Separation Power of Equivariant Neural Networks
Marco Pacini
Xiaowen Dong
Bruno Lepri
G. Santin
21
0
0
13 Jun 2024
Equivariance via Minimal Frame Averaging for More Symmetries and
  Efficiency
Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
Yuchao Lin
Jacob Helwig
Shurui Gui
Shuiwang Ji
29
7
0
11 Jun 2024
Equivariant Machine Learning on Graphs with Nonlinear Spectral Filters
Equivariant Machine Learning on Graphs with Nonlinear Spectral Filters
Y. Lin
Ronen Talmon
Ron Levie
28
0
0
03 Jun 2024
GRANOLA: Adaptive Normalization for Graph Neural Networks
GRANOLA: Adaptive Normalization for Graph Neural Networks
Moshe Eliasof
Beatrice Bevilacqua
Carola-Bibiane Schönlieb
Haggai Maron
24
5
0
20 Apr 2024
Polynormer: Polynomial-Expressive Graph Transformer in Linear Time
Polynormer: Polynomial-Expressive Graph Transformer in Linear Time
Chenhui Deng
Zichao Yue
Zhiru Zhang
81
23
0
02 Mar 2024
Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph
  Products
Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products
Guy Bar-Shalom
Beatrice Bevilacqua
Haggai Maron
AI4CE
20
6
0
13 Feb 2024
Weisfeiler-Leman at the margin: When more expressivity matters
Weisfeiler-Leman at the margin: When more expressivity matters
Billy J. Franks
Christopher Morris
A. Velingker
Floris Geerts
42
9
0
12 Feb 2024
Future Directions in the Theory of Graph Machine Learning
Future Directions in the Theory of Graph Machine Learning
Christopher Morris
Fabrizio Frasca
Nadav Dym
Haggai Maron
.Ismail .Ilkan Ceylan
Ron Levie
Derek Lim
Michael M. Bronstein
Martin Grohe
Stefanie Jegelka
AI4CE
27
4
0
03 Feb 2024
Towards Principled Graph Transformers
Towards Principled Graph Transformers
Luis Muller
Daniel Kusuma
Blai Bonet
Christopher Morris
18
0
0
18 Jan 2024
A Characterization Theorem for Equivariant Networks with Point-wise
  Activations
A Characterization Theorem for Equivariant Networks with Point-wise Activations
Marco Pacini
Xiaowen Dong
Bruno Lepri
G. Santin
29
2
0
17 Jan 2024
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Derek Lim
Joshua Robinson
Stefanie Jegelka
Haggai Maron
43
16
0
04 Dec 2023
Efficient Subgraph GNNs by Learning Effective Selection Policies
Efficient Subgraph GNNs by Learning Effective Selection Policies
Beatrice Bevilacqua
Moshe Eliasof
E. Meirom
Bruno Ribeiro
Haggai Maron
18
13
0
30 Oct 2023
Expectation-Complete Graph Representations with Homomorphisms
Expectation-Complete Graph Representations with Homomorphisms
Pascal Welke
Maximilian Thiessen
Fabian Jogl
Thomas Gärtner
11
5
0
09 Jun 2023
Fine-grained Expressivity of Graph Neural Networks
Fine-grained Expressivity of Graph Neural Networks
Jan Böker
Ron Levie
Ningyuan Huang
Soledad Villar
Christopher Morris
15
20
0
06 Jun 2023
WL meet VC
WL meet VC
Christopher Morris
Floris Geerts
Jan Tonshoff
Martin Grohe
28
26
0
26 Jan 2023
Weisfeiler and Leman go Machine Learning: The Story so far
Weisfeiler and Leman go Machine Learning: The Story so far
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Alexander Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten M. Borgwardt
GNN
16
110
0
18 Dec 2021
Frame Averaging for Invariant and Equivariant Network Design
Frame Averaging for Invariant and Equivariant Network Design
Omri Puny
Matan Atzmon
Heli Ben-Hamu
Ishan Misra
Aditya Grover
Edward James Smith
Y. Lipman
FedML
33
90
0
07 Oct 2021
Reconstruction for Powerful Graph Representations
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
117
78
0
01 Oct 2021
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
178
907
0
02 Mar 2020
1