Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2302.11640
Cited By
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
22 February 2023
Oleg Platonov
Denis Kuznedelev
Michael Diskin
Artem Babenko
Liudmila Prokhorenkova
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A critical look at the evaluation of GNNs under heterophily: Are we really making progress?"
38 / 138 papers shown
Title
Breaking the Entanglement of Homophily and Heterophily in Semi-supervised Node Classification
Henan Sun
Xunkai Li
Zhengyu Wu
Daohan Su
Ronghua Li
Guoren Wang
27
12
0
07 Dec 2023
Mixture of Weak & Strong Experts on Graphs
Hanqing Zeng
Hanjia Lyu
Diyi Hu
Yinglong Xia
Jiebo Luo
23
3
0
09 Nov 2023
Simple and Asymmetric Graph Contrastive Learning without Augmentations
Teng Xiao
Huaisheng Zhu
Zhengyu Chen
Suhang Wang
22
31
0
29 Oct 2023
Are GATs Out of Balance?
Nimrah Mustafa
Aleksandar Bojchevski
R. Burkholz
41
4
0
11 Oct 2023
How Graph Neural Networks Learn: Lessons from Training Dynamics
Chenxiao Yang
Qitian Wu
David Wipf
Ruoyu Sun
Junchi Yan
AI4CE
GNN
14
1
0
08 Oct 2023
HoloNets: Spectral Convolutions do extend to Directed Graphs
Christian Koke
Daniel Cremers
31
8
0
03 Oct 2023
FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations
C. Ekbote
Ajinkya Deshpande
Arun Shankar Iyer
Ramakrishna Bairi
Sundararajan Sellamanickam
SSL
39
3
0
03 Oct 2023
Cooperative Graph Neural Networks
Ben Finkelshtein
Xingyue Huang
Michael M. Bronstein
.Ismail .Ilkan Ceylan
GNN
22
19
0
02 Oct 2023
Geometric instability of graph neural networks on large graphs
Emily L Morris
Haotian Shen
Weiling Du
Muhammad Hamza Sajjad
Borun Shi
GNN
22
0
0
19 Aug 2023
Investigating the Interplay between Features and Structures in Graph Learning
Daniele Castellana
Federico Errica
15
3
0
18 Aug 2023
Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions
Lukas Gosch
Simon Geisler
Daniel Sturm
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
AAML
GNN
6
26
0
27 Jun 2023
PathMLP: Smooth Path Towards High-order Homophily
Chenxuan Xie
Jiajun Zhou
Sheng Gong
Jiacheng Wan
Jiaxu Qian
Shanqing Yu
Qi Xuan
Xiaoniu Yang
11
5
0
23 Jun 2023
Evolving Computation Graphs
Andreea Deac
Jian Tang
14
1
0
22 Jun 2023
GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection
Jianheng Tang
Fengrui Hua
Zi-Chao Gao
P. Zhao
Jia Li
14
53
0
21 Jun 2023
SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations
Qitian Wu
Wen-Long Zhao
Chenxiao Yang
Hengrui Zhang
Fan Nie
Haitian Jiang
Yatao Bian
Junchi Yan
AI4CE
33
74
0
19 Jun 2023
OpenGSL: A Comprehensive Benchmark for Graph Structure Learning
Zhiyao Zhou
Sheng Zhou
Bochao Mao
Xu Zhou
Jiawei Chen
Qiaoyu Tan
Daochen Zha
Yan Feng
Chun-Yen Chen
C. Wang
27
20
0
17 Jun 2023
A Simple and Scalable Graph Neural Network for Large Directed Graphs
Seiji Maekawa
Yuya Sasaki
Makoto Onizuka
GNN
6
0
0
14 Jun 2023
On Performance Discrepancies Across Local Homophily Levels in Graph Neural Networks
Donald Loveland
Jiong Zhu
Mark Heimann
Benjamin Fish
Michael T. Shaub
Danai Koutra
23
5
0
08 Jun 2023
Towards Deep Attention in Graph Neural Networks: Problems and Remedies
Soo Yong Lee
Fanchen Bu
Jaemin Yoo
Kijung Shin
GNN
9
30
0
04 Jun 2023
Clarify Confused Nodes via Separated Learning
Jiajun Zhou
Sheng Gong
Chenxuan Xie
Shanqing Yu
Qi Xuan
Xiaoniu Yang
Xiaoniu Yang
47
3
0
04 Jun 2023
Demystifying Structural Disparity in Graph Neural Networks: Can One Size Fit All?
Haitao Mao
Zhikai Chen
Wei Jin
Haoyu Han
Yao Ma
Tong Zhao
Neil Shah
Jiliang Tang
21
31
0
02 Jun 2023
Is Rewiring Actually Helpful in Graph Neural Networks?
Domenico Tortorella
A. Micheli
AI4CE
27
2
0
31 May 2023
Graph Neural Convection-Diffusion with Heterophily
Kai Zhao
Qiyu Kang
Yang Song
Rui She
Sijie Wang
Wee Peng Tay
22
27
0
26 May 2023
A Fractional Graph Laplacian Approach to Oversmoothing
Sohir Maskey
Raffaele Paolino
Aras Bacho
Gitta Kutyniok
22
27
0
22 May 2023
Edge Directionality Improves Learning on Heterophilic Graphs
Emanuele Rossi
Bertrand Charpentier
Francesco Di Giovanni
Fabrizio Frasca
Stephan Günnemann
Michael M. Bronstein
15
56
0
17 May 2023
GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
Andrea Cavallo
Claas Grohnfeldt
Michele Russo
Giulio Lovisotto
L. Vassio
15
10
0
21 Apr 2023
Graph Contrastive Learning under Heterophily via Graph Filters
Wenhan Yang
Baharan Mirzasoleiman
12
2
0
11 Mar 2023
Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts
Gleb Bazhenov
Denis Kuznedelev
A. Malinin
Artem Babenko
Liudmila Prokhorenkova
OOD
6
3
0
27 Feb 2023
Diffusion Probabilistic Models for Structured Node Classification
Hyosoon Jang
Seonghyun Park
Sangwoo Mo
Sungsoo Ahn
DiffM
14
3
0
21 Feb 2023
Attending to Graph Transformers
Luis Muller
Mikhail Galkin
Christopher Morris
Ladislav Rampášek
44
84
0
08 Feb 2023
Neighborhood Homophily-based Graph Convolutional Network
Sheng Gong
Jiajun Zhou
Chenxuan Xie
Qi Xuan
GNN
18
7
0
24 Jan 2023
Characterizing Graph Datasets for Node Classification: Homophily-Heterophily Dichotomy and Beyond
Oleg Platonov
Denis Kuznedelev
Artem Babenko
Liudmila Prokhorenkova
51
37
0
13 Sep 2022
Understanding convolution on graphs via energies
Francesco Di Giovanni
J. Rowbottom
B. Chamberlain
Thomas Markovich
Michael M. Bronstein
GNN
18
42
0
22 Jun 2022
How Powerful are Spectral Graph Neural Networks
Xiyuan Wang
Muhan Zhang
70
175
0
23 May 2022
Graph Neural Networks for Graphs with Heterophily: A Survey
Xin-Yang Zheng
Yi Wang
Yixin Liu
Ming Li
Miao Zhang
Di Jin
Philip S. Yu
Shirui Pan
19
213
0
14 Feb 2022
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
87
554
0
04 Jan 2021
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
145
828
0
28 Sep 2019
Previous
1
2
3