ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.00691
  4. Cited By
On the Importance of Feature Representation for Flood Mapping using
  Classical Machine Learning Approaches

On the Importance of Feature Representation for Flood Mapping using Classical Machine Learning Approaches

1 March 2023
Kevin Iselborn
Marco Stricker
T. Miyamoto
Marlon Nuske
Andreas Dengel
    AI4CE
ArXivPDFHTML

Papers citing "On the Importance of Feature Representation for Flood Mapping using Classical Machine Learning Approaches"

3 / 3 papers shown
Title
Q-Seg: Quantum Annealing-based Unsupervised Image Segmentation
Q-Seg: Quantum Annealing-based Unsupervised Image Segmentation
Supreeth Mysore Venkatesh
A. Macaluso
Marlon Nuske
Matthias Klusch
A. Dengel
19
5
0
21 Nov 2023
Multimodal contrastive learning for remote sensing tasks
Multimodal contrastive learning for remote sensing tasks
Umang Jain
Alex Wilson
Varun Gulshan
SSL
28
24
0
06 Sep 2022
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
284
39,190
0
01 Sep 2014
1