Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2303.03428
Cited By
Towards provably efficient quantum algorithms for large-scale machine-learning models
6 March 2023
Junyu Liu
Minzhao Liu
Jin-Peng Liu
Ziyu Ye
Yunfei Wang
Yuri Alexeev
Jens Eisert
Liang Jiang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards provably efficient quantum algorithms for large-scale machine-learning models"
6 / 6 papers shown
Title
Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent
Pingzhi Li
Junyu Liu
Hanrui Wang
Tianlong Chen
76
1
0
30 Apr 2024
sQUlearn -- A Python Library for Quantum Machine Learning
D. Kreplin
Moritz Willmann
Jan Schnabel
Frederic Rapp
Manuel Hagelüken
M. Roth
GP
22
9
0
15 Nov 2023
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
239
626
0
21 Apr 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
136
679
0
31 Jan 2021
Information-theoretic bounds on quantum advantage in machine learning
Hsin-Yuan Huang
R. Kueng
J. Preskill
63
211
0
07 Jan 2021
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
153
232
0
04 Mar 2020
1