ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.04124
  4. Cited By
Wigner kernels: body-ordered equivariant machine learning without a
  basis

Wigner kernels: body-ordered equivariant machine learning without a basis

7 March 2023
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
ArXivPDFHTML

Papers citing "Wigner kernels: body-ordered equivariant machine learning without a basis"

9 / 9 papers shown
Title
Representing spherical tensors with scalar-based machine-learning models
Representing spherical tensors with scalar-based machine-learning models
Michelangelo Domina
Filippo Bigi
Paolo Pegolo
Michele Ceriotti
43
0
0
08 May 2025
Data Fusion of Deep Learned Molecular Embeddings for Property Prediction
Data Fusion of Deep Learned Molecular Embeddings for Property Prediction
Robert Appleton
Brian C Barnes
Alejandro Strachan
FedML
AI4CE
32
0
0
09 Apr 2025
HydraScreen: A Generalizable Structure-Based Deep Learning Approach to
  Drug Discovery
HydraScreen: A Generalizable Structure-Based Deep Learning Approach to Drug Discovery
Alvaro Prat
Hisham Abdel-Aty
Gintautas Kamuntavicius
Tanya Paquet
P. Norvaisas
Piero Gasparotto
Roy Tal
13
2
0
22 Sep 2023
Smooth, exact rotational symmetrization for deep learning on point
  clouds
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
30
25
0
30 May 2023
Evaluation of the MACE Force Field Architecture: from Medicinal
  Chemistry to Materials Science
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
16
81
0
23 May 2023
Tensor-reduced atomic density representations
Tensor-reduced atomic density representations
James P. Darby
D. P. Kovács
Ilyes Batatia
M. A. Caro
G. Hart
Christoph Ortner
Gábor Csányi
39
32
0
02 Oct 2022
Gaussian Moments as Physically Inspired Molecular Descriptors for
  Accurate and Scalable Machine Learning Potentials
Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
Viktor Zaverkin
Johannes Kastner
29
67
0
15 Sep 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,100
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
190
1,229
0
08 Jan 2021
1