ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.05420
  4. Cited By
Kernel Regression with Infinite-Width Neural Networks on Millions of
  Examples

Kernel Regression with Infinite-Width Neural Networks on Millions of Examples

9 March 2023
Ben Adlam
Jaehoon Lee
Shreyas Padhy
Zachary Nado
Jasper Snoek
ArXivPDFHTML

Papers citing "Kernel Regression with Infinite-Width Neural Networks on Millions of Examples"

14 / 14 papers shown
Title
Uncertainty Quantification From Scaling Laws in Deep Neural Networks
Ibrahim Elsharkawy
Yonatan Kahn
Benjamin Hooberman
UQCV
45
0
0
07 Mar 2025
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel
  Machines
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
28
0
0
08 Oct 2024
Efficient Two-Stage Gaussian Process Regression Via Automatic Kernel
  Search and Subsampling
Efficient Two-Stage Gaussian Process Regression Via Automatic Kernel Search and Subsampling
Shifan Zhao
Jiaying Lu
Carl Yang
Edmond Chow
Yuanzhe Xi
34
1
0
22 May 2024
Learning epidemic trajectories through Kernel Operator Learning: from
  modelling to optimal control
Learning epidemic trajectories through Kernel Operator Learning: from modelling to optimal control
Giovanni Ziarelli
N. Parolini
M. Verani
16
2
0
17 Apr 2024
Flexible infinite-width graph convolutional networks and the importance
  of representation learning
Flexible infinite-width graph convolutional networks and the importance of representation learning
Ben Anson
Edward Milsom
Laurence Aitchison
SSL
GNN
24
1
0
09 Feb 2024
Asymptotics of feature learning in two-layer networks after one
  gradient-step
Asymptotics of feature learning in two-layer networks after one gradient-step
Hugo Cui
Luca Pesce
Yatin Dandi
Florent Krzakala
Yue M. Lu
Lenka Zdeborová
Bruno Loureiro
MLT
55
16
0
07 Feb 2024
Convolutional Deep Kernel Machines
Convolutional Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
BDL
23
5
0
18 Sep 2023
Mechanism of feature learning in convolutional neural networks
Mechanism of feature learning in convolutional neural networks
Daniel Beaglehole
Adityanarayanan Radhakrishnan
Parthe Pandit
Misha Belkin
FAtt
MLT
32
14
0
01 Sep 2023
Guided Deep Kernel Learning
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
31
5
0
19 Feb 2023
Fast Neural Kernel Embeddings for General Activations
Fast Neural Kernel Embeddings for General Activations
Insu Han
A. Zandieh
Jaehoon Lee
Roman Novak
Lechao Xiao
Amin Karbasi
48
18
0
09 Sep 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit
  Composite Kernel
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
30
4
0
15 May 2022
Convolutional Xformers for Vision
Convolutional Xformers for Vision
Pranav Jeevan
Amit Sethi
ViT
42
12
0
25 Jan 2022
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
231
4,469
0
23 Jan 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,775
0
02 Mar 2017
1