ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.06318
  4. Cited By
A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize
  Mixture-of-Experts Training

A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training

11 March 2023
Siddharth Singh
Olatunji Ruwase
A. A. Awan
Samyam Rajbhandari
Yuxiong He
A. Bhatele
    MoE
ArXivPDFHTML

Papers citing "A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training"

14 / 14 papers shown
Title
Accelerating Mixture-of-Experts Training with Adaptive Expert Replication
Accelerating Mixture-of-Experts Training with Adaptive Expert Replication
Athinagoras Skiadopoulos
Mark Zhao
Swapnil Gandhi
Thomas Norrie
Shrijeet Mukherjee
Christos Kozyrakis
MoE
91
0
0
28 Apr 2025
MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
Dennis Liu
Zijie Yan
Xin Yao
Tong Liu
V. Korthikanti
...
Jiajie Yao
Chandler Zhou
David Wu
Xipeng Li
J. Yang
MoE
56
0
0
21 Apr 2025
A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Siyuan Mu
Sen Lin
MoE
118
1
0
10 Mar 2025
Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
Yan Li
Pengfei Zheng
Shuang Chen
Zewei Xu
Yuanhao Lai
Yunfei Du
Z. Wang
MoE
107
0
0
06 Mar 2025
Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers
Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers
Siddharth Singh
Prajwal Singhania
Aditya K. Ranjan
John Kirchenbauer
Jonas Geiping
...
Abhimanyu Hans
Manli Shu
Aditya Tomar
Tom Goldstein
A. Bhatele
94
2
0
12 Feb 2025
Importance Sampling via Score-based Generative Models
Importance Sampling via Score-based Generative Models
Heasung Kim
Taekyun Lee
Hyeji Kim
Gustavo de Veciana
MedIm
DiffM
129
1
0
07 Feb 2025
iServe: An Intent-based Serving System for LLMs
iServe: An Intent-based Serving System for LLMs
Dimitrios Liakopoulos
Tianrui Hu
Prasoon Sinha
N. Yadwadkar
VLM
122
0
0
08 Jan 2025
EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference
EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference
Yulei Qian
Fengcun Li
Xiangyang Ji
Xiaoyu Zhao
Jianchao Tan
K. Zhang
Xunliang Cai
MoE
68
3
0
16 Oct 2024
Tutel: Adaptive Mixture-of-Experts at Scale
Tutel: Adaptive Mixture-of-Experts at Scale
Changho Hwang
Wei Cui
Yifan Xiong
Ziyue Yang
Ze Liu
...
Joe Chau
Peng Cheng
Fan Yang
Mao Yang
Y. Xiong
MoE
92
109
0
07 Jun 2022
Scalable and Efficient MoE Training for Multitask Multilingual Models
Scalable and Efficient MoE Training for Multitask Multilingual Models
Young Jin Kim
A. A. Awan
Alexandre Muzio
Andres Felipe Cruz Salinas
Liyang Lu
Amr Hendy
Samyam Rajbhandari
Yuxiong He
Hany Awadalla
MoE
94
84
0
22 Sep 2021
ZeRO-Offload: Democratizing Billion-Scale Model Training
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
160
413
0
18 Jan 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
248
1,986
0
31 Dec 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
226
4,453
0
23 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,817
0
17 Sep 2019
1