ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.10218
  4. Cited By
An Empirical Evaluation of Federated Contextual Bandit Algorithms

An Empirical Evaluation of Federated Contextual Bandit Algorithms

17 March 2023
Alekh Agarwal
H. B. McMahan
Zheng Xu
    FedML
ArXivPDFHTML

Papers citing "An Empirical Evaluation of Federated Contextual Bandit Algorithms"

5 / 5 papers shown
Title
Harnessing the Power of Federated Learning in Federated Contextual
  Bandits
Harnessing the Power of Federated Learning in Federated Contextual Bandits
Chengshuai Shi
Ruida Zhou
Kun Yang
Cong Shen
FedML
19
0
0
26 Dec 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential
  Privacy
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
Test-Time Robust Personalization for Federated Learning
Test-Time Robust Personalization for Federated Learning
Liang Jiang
Tao R. Lin
FedML
OOD
TTA
75
43
0
22 May 2022
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
178
154
0
26 Feb 2021
1