ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.11844
  4. Cited By
Doubly Regularized Entropic Wasserstein Barycenters

Doubly Regularized Entropic Wasserstein Barycenters

21 March 2023
Lénaïc Chizat
ArXivPDFHTML

Papers citing "Doubly Regularized Entropic Wasserstein Barycenters"

8 / 8 papers shown
Title
Linearized Wasserstein Barycenters: Synthesis, Analysis, Representational Capacity, and Applications
Linearized Wasserstein Barycenters: Synthesis, Analysis, Representational Capacity, and Applications
Matthew Werenski
Brendan Mallery
Shuchin Aeron
James M. Murphy
36
0
0
31 Oct 2024
On Barycenter Computation: Semi-Unbalanced Optimal Transport-based
  Method on Gaussians
On Barycenter Computation: Semi-Unbalanced Optimal Transport-based Method on Gaussians
Ngoc-Hai Nguyen
Dung D. Le
Hoang Nguyen
Tung Pham
Nhat Ho
OT
34
1
0
10 Oct 2024
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Robust Barycenter Estimation using Semi-Unbalanced Neural Optimal Transport
Milena Gazdieva
Jaemoo Choi
Alexander Kolesov
Jaewoong Choi
Petr Mokrov
Alexander Korotin
OT
34
0
0
04 Oct 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
22
2
0
02 Oct 2023
Computational Guarantees for Doubly Entropic Wasserstein Barycenters via
  Damped Sinkhorn Iterations
Computational Guarantees for Doubly Entropic Wasserstein Barycenters via Damped Sinkhorn Iterations
Lénaïc Chizat
Tomas Vaskevicius
15
1
0
25 Jul 2023
Tree-Based Diffusion Schrödinger Bridge with Applications to
  Wasserstein Barycenters
Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters
Maxence Noble
Valentin De Bortoli
Arnaud Doucet
Alain Durmus
DiffM
OT
27
7
0
26 May 2023
Convex Analysis of the Mean Field Langevin Dynamics
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
57
63
0
25 Jan 2022
Wasserstein barycenters are NP-hard to compute
Wasserstein barycenters are NP-hard to compute
Jason M. Altschuler
Enric Boix-Adserà
OT
155
40
0
04 Jan 2021
1