ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.13937
  4. Cited By
Topological Reconstruction of Particle Physics Processes using Graph
  Neural Networks
v1v2v3v4v5 (latest)

Topological Reconstruction of Particle Physics Processes using Graph Neural Networks

24 March 2023
Lukas Ehrke
C. Pollard
K. Zoch
M. Guth
J. A. Raine
    BDLAI4CE
ArXiv (abs)PDFHTML

Papers citing "Topological Reconstruction of Particle Physics Processes using Graph Neural Networks"

3 / 3 papers shown
PASCL: Supervised Contrastive Learning with Perturbative Augmentation
  for Particle Decay Reconstruction
PASCL: Supervised Contrastive Learning with Perturbative Augmentation for Particle Decay Reconstruction
Junjian Lu
Houcheng Su
Dmitrii Kobylianski
Etienne Dreyer
Eilam Gross
Houcheng Su
179
3
0
18 Feb 2024
Reconstruction of Unstable Heavy Particles Using Deep
  Symmetry-Preserving Attention Networks
Reconstruction of Unstable Heavy Particles Using Deep Symmetry-Preserving Attention NetworksCommunications Physics (CP), 2023
M. Fenton
Alexander Shmakov
H. Okawa
Yuji Li
Ko-Yang Hsiao
Shih-Chieh Hsu
D. Whiteson
Pierre Baldi
218
11
0
05 Sep 2023
$ν^2$-Flows: Fast and improved neutrino reconstruction in
  multi-neutrino final states with conditional normalizing flows
ν2ν^2ν2-Flows: Fast and improved neutrino reconstruction in multi-neutrino final states with conditional normalizing flows
C. Pollard
Matthew Leigh
K. Zoch
J. A. Raine
257
21
0
05 Jul 2023
1