ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2303.17783
  4. Cited By
Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with
  Wavelet Augmentation Transformer

Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer

31 March 2023
Yuang Ai
Xiaoqiang Zhou
Huaibo Huang
Lei Zhang
Ran He
ArXivPDFHTML

Papers citing "Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer"

6 / 6 papers shown
Title
Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free
  Domain Adaptation for Video Semantic Segmentation
Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free Domain Adaptation for Video Semantic Segmentation
Shao-Yuan Lo
Poojan Oza
Sumanth Chennupati
Alejandro Galindo
Vishal M. Patel
29
12
0
25 Mar 2023
Guiding Pseudo-labels with Uncertainty Estimation for Source-free
  Unsupervised Domain Adaptation
Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation
Mattia Litrico
Alessio Del Bue
Pietro Morerio
UQCV
27
59
0
07 Mar 2023
Denoising Diffusion Restoration Models
Denoising Diffusion Restoration Models
Bahjat Kawar
Michael Elad
Stefano Ermon
Jiaming Song
DiffM
196
770
0
27 Jan 2022
Palette: Image-to-Image Diffusion Models
Palette: Image-to-Image Diffusion Models
Chitwan Saharia
William Chan
Huiwen Chang
Chris A. Lee
Jonathan Ho
Tim Salimans
David J. Fleet
Mohammad Norouzi
DiffM
VLM
314
1,570
0
10 Nov 2021
Source Data-absent Unsupervised Domain Adaptation through Hypothesis
  Transfer and Labeling Transfer
Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
Jian Liang
Dapeng Hu
Yunbo Wang
R. He
Jiashi Feng
128
249
0
14 Dec 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
1