ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.02431
  4. Cited By
MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation
  in 3D Object Detection

MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation in 3D Object Detection

5 April 2023
Darren Tsai
J. S. Berrio
Mao Shan
E. Nebot
Stewart Worrall
    3DPC
ArXivPDFHTML

Papers citing "MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation in 3D Object Detection"

4 / 4 papers shown
Title
S3PT: Scene Semantics and Structure Guided Clustering to Boost Self-Supervised Pre-Training for Autonomous Driving
S3PT: Scene Semantics and Structure Guided Clustering to Boost Self-Supervised Pre-Training for Autonomous Driving
Maciej K. Wozniak
Hariprasath Govindarajan
Marvin Klingner
Camille Maurice
B Ravi Kiran
S. Yogamani
3DPC
47
1
0
30 Oct 2024
Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection
Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection
Bo-Wen Zhang
Jiakang Yuan
Botian Shi
Tao Chen
Yikang Li
Yu Qiao
3DPC
32
37
0
13 Mar 2023
Viewer-Centred Surface Completion for Unsupervised Domain Adaptation in
  3D Object Detection
Viewer-Centred Surface Completion for Unsupervised Domain Adaptation in 3D Object Detection
Darren Tsai
J. S. Berrio
Mao Shan
E. Nebot
Stewart Worrall
3DPC
41
14
0
14 Sep 2022
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
219
13,886
0
02 Dec 2016
1