Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.02539
Cited By
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
5 April 2023
M. Herde
Denis Huseljic
Bernhard Sick
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-annotator Deep Learning: A Probabilistic Framework for Classification"
8 / 8 papers shown
Title
crowd-hpo: Realistic Hyperparameter Optimization and Benchmarking for Learning from Crowds with Noisy Labels
M. Herde
Lukas Lührs
Denis Huseljic
Bernhard Sick
22
0
0
12 Apr 2025
dopanim: A Dataset of Doppelganger Animals with Noisy Annotations from Multiple Humans
M. Herde
Denis Huseljic
Lukas Rauch
Bernhard Sick
19
1
0
30 Jul 2024
Annot-Mix: Learning with Noisy Class Labels from Multiple Annotators via a Mixup Extension
M. Herde
Lukas Lührs
Denis Huseljic
Bernhard Sick
21
3
0
06 May 2024
Learning to Complement with Multiple Humans
Zheng Zhang
Cuong C. Nguyen
Kevin Wells
Thanh-Toan Do
Gustavo Carneiro
16
0
0
22 Nov 2023
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
M. Herde
Denis Huseljic
Bernhard Sick
A. Calma
27
19
0
23 Sep 2021
Simple Modifications to Improve Tabular Neural Networks
J. Fiedler
LMTD
75
19
0
06 Aug 2021
Deep Cosine Metric Learning for Person Re-Identification
N. Wojke
Alex Bewley
31
349
0
02 Dec 2018
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
279
39,083
0
01 Sep 2014
1