Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2304.05366
Cited By
v1
v2
v3 (latest)
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
International Conference on Machine Learning (ICML), 2023
11 April 2023
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCV
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
HuggingFace (1 upvotes)
Papers citing
"The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning"
37 / 37 papers shown
Title
Self-Adaptive Graph Mixture of Models
Mohit Meena
Yash Punjabi
Abhishek A
Vishal Sharma
Mahesh Chandran
104
0
0
17 Nov 2025
A Survey of Inductive Reasoning for Large Language Models
Kedi Chen
Dezhao Ruan
Yuhao Dan
Y. Wang
Siyu Yan
...
Biqing Qi
Linyang Li
Qipeng Guo
Xiaoming Shi
Wei-na Zhang
LRM
70
3
0
11 Oct 2025
Bridging Kolmogorov Complexity and Deep Learning: Asymptotically Optimal Description Length Objectives for Transformers
Peter Shaw
James Cohan
Jacob Eisenstein
Kristina Toutanova
154
0
0
26 Sep 2025
Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training
Woojin Chung
Jeonghoon Kim
144
0
0
21 Aug 2025
Foundations of Interpretable Models
Pietro Barbiero
M. Zarlenga
Alberto Termine
M. Jamnik
Giuseppe Marra
AI4CE
93
0
0
01 Aug 2025
Overfitting has a limitation: a model-independent generalization gap bound based on Rényi entropy
Atsushi Suzuki
Jing Wang
161
0
0
30 May 2025
Characterising the Inductive Biases of Neural Networks on Boolean Data
Chris Mingard
Lukas Seier
Niclas Goring
Andrei-Vlad Badelita
Charles London
Ard A. Louis
AI4CE
220
1
0
29 May 2025
Variational Deep Learning via Implicit Regularization
Jonathan Wenger
Beau Coker
Juraj Marusic
John P. Cunningham
OOD
UQCV
BDL
256
1
0
26 May 2025
Constant Bit-size Transformers Are Turing Complete
Qian Li
Yuyi Wang
LRM
117
1
0
22 May 2025
A Mathematical Philosophy of Explanations in Mechanistic Interpretability -- The Strange Science Part I.i
Kola Ayonrinde
Louis Jaburi
MILM
418
3
0
01 May 2025
Do We Always Need the Simplicity Bias? Looking for Optimal Inductive Biases in the Wild
Computer Vision and Pattern Recognition (CVPR), 2025
Damien Teney
Liangze Jiang
Florin Gogianu
Ehsan Abbasnejad
946
4
0
13 Mar 2025
Deep Learning is Not So Mysterious or Different
Andrew Gordon Wilson
273
21
0
03 Mar 2025
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
618
17
0
18 Oct 2024
In-context learning and Occam's razor
Eric Elmoznino
Tom Marty
Tejas Kasetty
Léo Gagnon
Sarthak Mittal
Mahan Fathi
Dhanya Sridhar
Guillaume Lajoie
440
4
0
17 Oct 2024
OOD-Chameleon: Is Algorithm Selection for OOD Generalization Learnable?
Liangze Jiang
Damien Teney
OODD
OOD
487
1
0
03 Oct 2024
Grand Challenges in Bayesian Computation
Anirban Bhattacharya
Antonio Linero
Chris. J. Oates
163
3
0
01 Oct 2024
Understanding Simplicity Bias towards Compositional Mappings via Learning Dynamics
Yi Ren
Danica J. Sutherland
CoGe
151
6
0
15 Sep 2024
Rule Extrapolation in Language Models: A Study of Compositional Generalization on OOD Prompts
Anna Mészáros
Szilvia Ujváry
Wieland Brendel
Patrik Reizinger
Ferenc Huszár
211
1
0
09 Sep 2024
Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models
Sanae Lotfi
Yilun Kuang
Brandon Amos
Micah Goldblum
Marc Finzi
Andrew Gordon Wilson
168
14
0
25 Jul 2024
Understanding Visual Feature Reliance through the Lens of Complexity
Thomas Fel
Louis Bethune
Andrew Kyle Lampinen
Thomas Serre
Katherine Hermann
FAtt
CoGe
207
14
0
08 Jul 2024
Artificial Inductive Bias for Synthetic Tabular Data Generation in Data-Scarce Scenarios
Patricia A. Apellániz
Ana Jiménez
Borja Arroyo Galende
J. Parras
Santiago Zazo
339
1
0
03 Jul 2024
Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs
Mustafa Shukor
Matthieu Cord
225
11
0
26 May 2024
The Platonic Representation Hypothesis
International Conference on Machine Learning (ICML), 2024
Minyoung Huh
Brian Cheung
Tongzhou Wang
Phillip Isola
566
224
0
13 May 2024
Demystifying the Hypercomplex: Inductive Biases in Hypercomplex Deep Learning
Danilo Comminiello
Eleonora Grassucci
Danilo P. Mandic
A. Uncini
HAI
AI4CE
200
4
0
11 May 2024
Analyzing the Role of Semantic Representations in the Era of Large Language Models
North American Chapter of the Association for Computational Linguistics (NAACL), 2024
Zhijing Jin
Yuen Chen
Fernando Gonzalez
Jiarui Liu
Jiayi Zhang
Julian Michael
Bernhard Schölkopf
Mona T. Diab
192
14
0
02 May 2024
Rethinking LLM Memorization through the Lens of Adversarial Compression
Avi Schwarzschild
Zhili Feng
Pratyush Maini
Zachary Chase Lipton
J. Zico Kolter
394
84
0
23 Apr 2024
Neural Redshift: Random Networks are not Random Functions
Damien Teney
A. Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad
499
33
0
04 Mar 2024
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
International Conference on Learning Representations (ICLR), 2024
Nate Gruver
Anuroop Sriram
Andrea Madotto
A. Wilson
C. L. Zitnick
Zachary W. Ulissi
224
99
0
06 Feb 2024
Learning from Teaching Regularization: Generalizable Correlations Should be Easy to Imitate
Can Jin
Tong Che
Hongwu Peng
Yiyuan Li
Dimitris N. Metaxas
Marco Pavone
308
55
0
05 Feb 2024
EXMOS: Explanatory Model Steering Through Multifaceted Explanations and Data Configurations
Aditya Bhattacharya
Simone Stumpf
Lucija Gosak
Gregor Stiglic
K. Verbert
169
29
0
01 Feb 2024
Non-Vacuous Generalization Bounds for Large Language Models
Sanae Lotfi
Marc Finzi
Yilun Kuang
Tim G. J. Rudner
Micah Goldblum
Andrew Gordon Wilson
429
37
0
28 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
343
5
0
07 Dec 2023
Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
Neural Information Processing Systems (NeurIPS), 2023
Micah Goldblum
Hossein Souri
Renkun Ni
Manli Shu
Viraj Prabhu
...
Adrien Bardes
Judy Hoffman
Ramalingam Chellappa
Andrew Gordon Wilson
Tom Goldstein
VLM
375
90
0
30 Oct 2023
In-Context Learning Dynamics with Random Binary Sequences
International Conference on Learning Representations (ICLR), 2023
Eric J. Bigelow
Ekdeep Singh Lubana
Robert P. Dick
Hidenori Tanaka
T. Ullman
300
12
0
26 Oct 2023
Large Language Models Are Zero-Shot Time Series Forecasters
Neural Information Processing Systems (NeurIPS), 2023
Nate Gruver
Marc Finzi
Shikai Qiu
Andrew Gordon Wilson
AI4TS
270
552
0
11 Oct 2023
In-Context Learning through the Bayesian Prism
International Conference on Learning Representations (ICLR), 2023
Madhuri Panwar
Kabir Ahuja
Navin Goyal
BDL
238
66
0
08 Jun 2023
Understanding Augmentation-based Self-Supervised Representation Learning via RKHS Approximation and Regression
International Conference on Learning Representations (ICLR), 2023
Runtian Zhai
Bing Liu
Andrej Risteski
Zico Kolter
Pradeep Ravikumar
SSL
287
17
0
01 Jun 2023
1