ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.05967
  4. Cited By
Angler: Helping Machine Translation Practitioners Prioritize Model
  Improvements

Angler: Helping Machine Translation Practitioners Prioritize Model Improvements

12 April 2023
Samantha Robertson
Zijie J. Wang
Dominik Moritz
Mary Beth Kery
Fred Hohman
ArXivPDFHTML

Papers citing "Angler: Helping Machine Translation Practitioners Prioritize Model Improvements"

8 / 8 papers shown
Title
Compress and Compare: Interactively Evaluating Efficiency and Behavior
  Across ML Model Compression Experiments
Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments
Angie Boggust
Venkatesh Sivaraman
Yannick Assogba
Donghao Ren
Dominik Moritz
Fred Hohman
VLM
50
3
0
06 Aug 2024
Canvil: Designerly Adaptation for LLM-Powered User Experiences
Canvil: Designerly Adaptation for LLM-Powered User Experiences
K. J. Kevin Feng
Q. V. Liao
Ziang Xiao
Jennifer Wortman Vaughan
Amy X. Zhang
David W. McDonald
31
16
0
17 Jan 2024
WizMap: Scalable Interactive Visualization for Exploring Large Machine
  Learning Embeddings
WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings
Zijie J. Wang
Fred Hohman
Duen Horng Chau
26
20
0
15 Jun 2023
Discovering and Validating AI Errors With Crowdsourced Failure Reports
Discovering and Validating AI Errors With Crowdsourced Failure Reports
Ángel Alexander Cabrera
Abraham J. Druck
Jason I. Hong
Adam Perer
HAI
45
54
0
23 Sep 2021
GENder-IT: An Annotated English-Italian Parallel Challenge Set for
  Cross-Linguistic Natural Gender Phenomena
GENder-IT: An Annotated English-Italian Parallel Challenge Set for Cross-Linguistic Natural Gender Phenomena
Eva Vanmassenhove
J. Monti
27
1
0
05 Aug 2021
The Tatoeba Translation Challenge -- Realistic Data Sets for Low
  Resource and Multilingual MT
The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT
Jörg Tiedemann
160
164
0
13 Oct 2020
Are We Modeling the Task or the Annotator? An Investigation of Annotator
  Bias in Natural Language Understanding Datasets
Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets
Mor Geva
Yoav Goldberg
Jonathan Berant
237
319
0
21 Aug 2019
Improving fairness in machine learning systems: What do industry
  practitioners need?
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
1