ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.10593
  4. Cited By
DeepReShape: Redesigning Neural Networks for Efficient Private Inference

DeepReShape: Redesigning Neural Networks for Efficient Private Inference

20 April 2023
N. Jha
Brandon Reagen
ArXivPDFHTML

Papers citing "DeepReShape: Redesigning Neural Networks for Efficient Private Inference"

13 / 13 papers shown
Title
PEEL the Layers and Find Yourself: Revisiting Inference-time Data Leakage for Residual Neural Networks
PEEL the Layers and Find Yourself: Revisiting Inference-time Data Leakage for Residual Neural Networks
Huzaifa Arif
K. Murugesan
Payel Das
Alex Gittens
Pin-Yu Chen
AAML
21
0
0
08 Apr 2025
ReLU's Revival: On the Entropic Overload in Normalization-Free Large
  Language Models
ReLU's Revival: On the Entropic Overload in Normalization-Free Large Language Models
N. Jha
Brandon Reagen
OffRL
AI4CE
22
0
0
12 Oct 2024
EQO: Exploring Ultra-Efficient Private Inference with Winograd-Based
  Protocol and Quantization Co-Optimization
EQO: Exploring Ultra-Efficient Private Inference with Winograd-Based Protocol and Quantization Co-Optimization
Wenxuan Zeng
Tianshi Xu
Meng Li
Runsheng Wang
MQ
25
0
0
15 Apr 2024
Verifiable evaluations of machine learning models using zkSNARKs
Verifiable evaluations of machine learning models using zkSNARKs
Tobin South
Alexander Camuto
Shrey Jain
Shayla Nguyen
Robert Mahari
Christian Paquin
Jason Morton
Alex Pentland
MLAU
ALM
20
11
0
05 Feb 2024
Regularized PolyKervNets: Optimizing Expressiveness and Efficiency for
  Private Inference in Deep Neural Networks
Regularized PolyKervNets: Optimizing Expressiveness and Efficiency for Private Inference in Deep Neural Networks
Toluwani Aremu
22
0
0
23 Dec 2023
CoPriv: Network/Protocol Co-Optimization for Communication-Efficient
  Private Inference
CoPriv: Network/Protocol Co-Optimization for Communication-Efficient Private Inference
Wenxuan Zeng
Meng Li
Haichuan Yang
Wen-jie Lu
Runsheng Wang
Ru Huang
17
6
0
03 Nov 2023
Approximating ReLU on a Reduced Ring for Efficient MPC-based Private
  Inference
Approximating ReLU on a Reduced Ring for Efficient MPC-based Private Inference
Kiwan Maeng
G. E. Suh
22
2
0
09 Sep 2023
MPCViT: Searching for Accurate and Efficient MPC-Friendly Vision
  Transformer with Heterogeneous Attention
MPCViT: Searching for Accurate and Efficient MPC-Friendly Vision Transformer with Heterogeneous Attention
Wenyuan Zeng
Meng Li
Wenjie Xiong
Tong Tong
Wen-jie Lu
Jin Tan
Runsheng Wang
Ru Huang
14
19
0
25 Nov 2022
F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption
  (Extended Version)
F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption (Extended Version)
Axel S. Feldmann
Nikola Samardzic
A. Krastev
S. Devadas
R. Dreslinski
Karim M. El Defrawy
Nicholas Genise
Chris Peikert
Daniel Sánchez
33
249
0
11 Sep 2021
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
BDL
FedML
52
181
0
22 Apr 2021
CrypTFlow2: Practical 2-Party Secure Inference
CrypTFlow2: Practical 2-Party Secure Inference
Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
75
247
0
13 Oct 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
261
10,106
0
16 Nov 2016
1