Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2304.13419
Cited By
Are Explainability Tools Gender Biased? A Case Study on Face Presentation Attack Detection
26 April 2023
Marco Huber
Meiling Fang
Fadi Boutros
Naser Damer
FaML
CVBM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Are Explainability Tools Gender Biased? A Case Study on Face Presentation Attack Detection"
4 / 4 papers shown
Title
SynthASpoof: Developing Face Presentation Attack Detection Based on Privacy-friendly Synthetic Data
Meiling Fang
Marco Huber
Naser Damer
AAML
48
20
0
05 Mar 2023
Fairness in Face Presentation Attack Detection
Meiling Fang
Wufei Yang
Arjan Kuijper
Vitomir Štruc
Naser Damer
CVBM
38
15
0
19 Sep 2022
Explaining Face Presentation Attack Detection Using Natural Language
H. Mirzaalian
Mohamed E. Hussein
L. Spinoulas
Jonathan May
Wael AbdAlmageed
CVBM
FAtt
AAML
6
5
0
08 Nov 2021
CelebA-Spoof: Large-Scale Face Anti-Spoofing Dataset with Rich Annotations
Yuanhan Zhang
Zhen-fei Yin
Yidong Li
Guojun Yin
Junjie Yan
Jing Shao
Ziwei Liu
CVBM
42
158
0
24 Jul 2020
1