ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2304.14422
  4. Cited By
MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling
v1v2 (latest)

MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
27 April 2023
Yicun Huang
Changfu Zou
Yongqian Li
T. Wik
    PINN
ArXiv (abs)PDFHTML

Papers citing "MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling"

15 / 15 papers shown
Title
Fast and Generalizable parameter-embedded Neural Operators for Lithium-Ion Battery Simulation
Fast and Generalizable parameter-embedded Neural Operators for Lithium-Ion Battery Simulation
Amir Ali Panahi
Daniel Luder
Billy Wu
Gregory Offer
Dirk Uwe Sauer
Weihan Li
92
0
0
11 Aug 2025
Diagnostic-free onboard battery health assessment
Yunhong Che
Vivek N. Lam
Jinwook Rhyu
Joachim Schaeffer
Minsu Kim
M. Bazant
W. Chueh
R. D. Braatz
162
4
0
10 Mar 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
345
3
0
15 Dec 2024
Physics-informed machine learning of redox flow battery based on a
  two-dimensional unit cell model
Physics-informed machine learning of redox flow battery based on a two-dimensional unit cell modelJournal of Power Sources (JPS), 2023
Wenqian Chen
Yu-Hang Fu
P. Stinis
PINN
241
23
0
31 May 2023
Characterizing possible failure modes in physics-informed neural
  networks
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINNAI4CE
310
853
0
02 Sep 2021
Predicting battery end of life from solar off-grid system field data
  using machine learning
Predicting battery end of life from solar off-grid system field data using machine learning
A. Aitio
David A. Howey
63
88
0
29 Jul 2021
High-performance symbolic-numerics via multiple dispatch
High-performance symbolic-numerics via multiple dispatchACM Communications in Computer Algebra (CCA), 2021
Shashi Gowda
Yingbo Ma
Alessandro Cheli
Maja Gwóźdź
Viral B. Shah
Alan Edelman
Chris Rackauckas
146
73
0
09 May 2021
Revealing hidden dynamics from time-series data by ODENet
Revealing hidden dynamics from time-series data by ODENet
Pipi Hu
Wuyue Yang
Yi Zhu
L. Hong
AI4TS
235
38
0
11 May 2020
DeepXDE: A deep learning library for solving differential equations
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINNAI4CE
330
1,864
0
10 Jul 2019
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
892
6,073
0
19 Jun 2018
Multistep Neural Networks for Data-driven Discovery of Nonlinear
  Dynamical Systems
Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems
M. Raissi
P. Perdikaris
George Karniadakis
PINN
215
276
0
04 Jan 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINNAI4CE
227
659
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINNAI4CE
214
1,057
0
28 Nov 2017
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
579
5,996
0
27 Jun 2016
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine TranslationConference on Empirical Methods in Natural Language Processing (EMNLP), 2014
Dong Wang
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.7K
25,043
0
03 Jun 2014
1