Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.01868
Cited By
Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models
3 May 2023
Daochen Zha
Louis Feng
Liangchen Luo
Bhargav Bhushanam
Zirui Liu
C. Yoo
J. McMahon
Yuzhen Huang
Bryan Clarke
A. Kejariwal
Xia Hu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models"
8 / 8 papers shown
Title
SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems
Aaron Ferber
Taoan Huang
Daochen Zha
M. Schubert
Benoit Steiner
B. Dilkina
Yuandong Tian
33
20
0
22 Oct 2022
RecShard: Statistical Feature-Based Memory Optimization for Industry-Scale Neural Recommendation
Geet Sethi
Bilge Acun
Niket Agarwal
Christos Kozyrakis
Caroline Trippel
Carole-Jean Wu
36
65
0
25 Jan 2022
Dynamic Memory based Attention Network for Sequential Recommendation
Qiaoyu Tan
Jianwei Zhang
Ninghao Liu
Xiao Shi Huang
Hongxia Yang
Jingren Zhou
Xia Hu
HAI
85
59
0
18 Feb 2021
Sparse-Interest Network for Sequential Recommendation
Qiaoyu Tan
Jianwei Zhang
Jiangchao Yao
Ninghao Liu
Jingren Zhou
Hongxia Yang
Xia Hu
77
130
0
18 Feb 2021
Learnable Embedding Sizes for Recommender Systems
Siyi Liu
Chen Gao
Yihong Chen
Depeng Jin
Yong Li
52
82
0
19 Jan 2021
FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
D. Khudia
Jianyu Huang
Protonu Basu
Summer Deng
Haixin Liu
Jongsoo Park
M. Smelyanskiy
FedML
MQ
27
44
0
13 Jan 2021
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
41
67
0
21 Oct 2020
Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems
Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
...
Krishnakumar Nair
Isabel Gao
Bor-Yiing Su
Jiyan Yang
M. Smelyanskiy
GNN
28
94
0
20 Mar 2020
1