ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.01868
  4. Cited By
Pre-train and Search: Efficient Embedding Table Sharding with
  Pre-trained Neural Cost Models

Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models

3 May 2023
Daochen Zha
Louis Feng
Liangchen Luo
Bhargav Bhushanam
Zirui Liu
C. Yoo
J. McMahon
Yuzhen Huang
Bryan Clarke
A. Kejariwal
Xia Hu
ArXivPDFHTML

Papers citing "Pre-train and Search: Efficient Embedding Table Sharding with Pre-trained Neural Cost Models"

9 / 9 papers shown
Title
SurCo: Learning Linear Surrogates For Combinatorial Nonlinear
  Optimization Problems
SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems
Aaron Ferber
Taoan Huang
Daochen Zha
M. Schubert
Benoit Steiner
B. Dilkina
Yuandong Tian
33
20
0
22 Oct 2022
RSC: Accelerating Graph Neural Networks Training via Randomized Sparse
  Computations
RSC: Accelerating Graph Neural Networks Training via Randomized Sparse Computations
Zirui Liu
Sheng-Wei Chen
Kaixiong Zhou
Daochen Zha
Xiao Huang
Xia Hu
24
14
0
19 Oct 2022
RecShard: Statistical Feature-Based Memory Optimization for
  Industry-Scale Neural Recommendation
RecShard: Statistical Feature-Based Memory Optimization for Industry-Scale Neural Recommendation
Geet Sethi
Bilge Acun
Niket Agarwal
Christos Kozyrakis
Caroline Trippel
Carole-Jean Wu
36
66
0
25 Jan 2022
Dynamic Memory based Attention Network for Sequential Recommendation
Dynamic Memory based Attention Network for Sequential Recommendation
Qiaoyu Tan
Jianwei Zhang
Ninghao Liu
Xiao Shi Huang
Hongxia Yang
Jingren Zhou
Xia Hu
HAI
85
1
0
18 Feb 2021
Sparse-Interest Network for Sequential Recommendation
Sparse-Interest Network for Sequential Recommendation
Qiaoyu Tan
Jianwei Zhang
Jiangchao Yao
Ninghao Liu
Jingren Zhou
Hongxia Yang
Xia Hu
77
130
0
18 Feb 2021
Learnable Embedding Sizes for Recommender Systems
Learnable Embedding Sizes for Recommender Systems
Siyi Liu
Chen Gao
Yihong Chen
Depeng Jin
Yong Li
52
82
0
19 Jan 2021
FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
FBGEMM: Enabling High-Performance Low-Precision Deep Learning Inference
D. Khudia
Jianyu Huang
Protonu Basu
Summer Deng
Haixin Liu
Jongsoo Park
M. Smelyanskiy
FedML
MQ
29
44
0
13 Jan 2021
Learning to Embed Categorical Features without Embedding Tables for
  Recommendation
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
41
68
0
21 Oct 2020
Deep Learning Training in Facebook Data Centers: Design of Scale-up and
  Scale-out Systems
Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems
Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
...
Krishnakumar Nair
Isabel Gao
Bor-Yiing Su
Jiyan Yang
M. Smelyanskiy
GNN
28
94
0
20 Mar 2020
1