Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.05120
Cited By
Bayesian Synthetic Likelihood
9 May 2023
David T. Frazier
Christopher C. Drovandi
David J. Nott
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Synthetic Likelihood"
32 / 32 papers shown
Title
Stacking Variational Bayesian Monte Carlo
Francesco Silvestrin
Chengkun Li
Luigi Acerbi
BDL
32
0
0
07 Apr 2025
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
66
9
0
17 Feb 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
108
2
0
17 Jan 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
58
13
0
03 Jan 2025
Learning from Summarized Data: Gaussian Process Regression with Sample Quasi-Likelihood
Yuta Shikuri
GP
30
0
0
23 Dec 2024
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
Laurence Perreault Levasseur
Y. Hezaveh
Laurence Perreault-Levasseur
Yashar Hezaveh
19
3
0
06 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
16
0
0
30 Jan 2024
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Pablo Lemos
A. Coogan
Y. Hezaveh
Laurence Perreault Levasseur
27
30
0
06 Feb 2023
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
20
10
0
31 Jan 2023
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
20
15
0
01 Aug 2022
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
16
11
0
22 Jun 2022
Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Ritabrata Dutta
TPM
BDL
UQCV
GAN
11
18
0
31 May 2022
On predictive inference for intractable models via approximate Bayesian computation
Marko Jarvenpaa
J. Corander
TPM
25
2
0
23 Mar 2022
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
18
42
0
09 Feb 2022
Population Calibration using Likelihood-Free Bayesian Inference
Christopher C. Drovandi
Brodie A. J. Lawson
A. Jenner
A. Browning
7
2
0
04 Feb 2022
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
12
5
0
07 Jan 2022
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
27
25
0
20 Dec 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
12
15
0
26 Oct 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
17
74
0
15 Apr 2021
A Comparison of Likelihood-Free Methods With and Without Summary Statistics
Christopher C. Drovandi
David T. Frazier
19
33
0
03 Mar 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
15
33
0
12 Feb 2021
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
11
10
0
18 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
6
40
0
15 Jun 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
31
117
0
10 Feb 2020
Robust Optimisation Monte Carlo
Borislav Ikonomov
Michael U. Gutmann
9
8
0
01 Apr 2019
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
16
40
0
13 Feb 2019
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
18
358
0
18 May 2018
Approximating the Likelihood in Approximate Bayesian Computation
Christopher C. Drovandi
Clara Grazian
Kerrie Mengersen
Christian P. Robert
16
12
0
18 Mar 2018
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
14
240
0
06 Nov 2017
An automatic adaptive method to combine summary statistics in approximate Bayesian computation
Jonathan U. Harrison
R. Baker
17
17
0
07 Mar 2017
Bayesian inference for stochastic differential equation mixed effects models of a tumor xenography study
Umberto Picchini
J. Forman
24
23
0
09 Jul 2016
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
1