Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.05711
Cited By
CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors
9 May 2023
Peng Li
Tianxiang Sun
Qiong Tang
Hang Yan
Yuanbin Wu
Xuanjing Huang
Technology
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors"
7 / 7 papers shown
Title
RUIE: Retrieval-based Unified Information Extraction using Large Language Model
Xincheng Liao
Junwen Duan
Yixi Huang
Jianxin Wang
31
1
0
18 Sep 2024
Large Language Models Meet NLP: A Survey
Libo Qin
Qiguang Chen
Xiachong Feng
Yang Wu
Yongheng Zhang
Yinghui Li
Min Li
Wanxiang Che
Philip S. Yu
ALM
LM&MA
ELM
LRM
38
44
0
21 May 2024
Chem-FINESE: Validating Fine-Grained Few-shot Entity Extraction through Text Reconstruction
Qingyun Wang
Zixuan Zhang
Hongxiang Li
Xuan Liu
Jiawei Han
Huimin Zhao
Heng Ji
32
1
0
18 Jan 2024
Binding Language Models in Symbolic Languages
Zhoujun Cheng
Tianbao Xie
Peng Shi
Chengzu Li
Rahul Nadkarni
...
Dragomir R. Radev
Mari Ostendorf
Luke Zettlemoyer
Noah A. Smith
Tao Yu
LMTD
109
195
0
06 Oct 2022
Large Language Models are Few-Shot Clinical Information Extractors
Monica Agrawal
S. Hegselmann
Hunter Lang
Yoon Kim
David Sontag
BDL
LM&MA
154
327
0
25 May 2022
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation
Yue Wang
Weishi Wang
Shafiq R. Joty
S. Hoi
204
1,451
0
02 Sep 2021
A Frustratingly Easy Approach for Entity and Relation Extraction
Zexuan Zhong
Danqi Chen
146
108
0
24 Oct 2020
1