ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.05840
  4. Cited By
Achieving Diversity in Counterfactual Explanations: a Review and
  Discussion

Achieving Diversity in Counterfactual Explanations: a Review and Discussion

10 May 2023
Thibault Laugel
Adulam Jeyasothy
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
    CML
ArXivPDFHTML

Papers citing "Achieving Diversity in Counterfactual Explanations: a Review and Discussion"

8 / 8 papers shown
Title
DiCE-Extended: A Robust Approach to Counterfactual Explanations in Machine Learning
DiCE-Extended: A Robust Approach to Counterfactual Explanations in Machine Learning
Volkan Bakir
Polat Goktas
Sureyya Akyuz
48
0
0
26 Apr 2025
Navigating Explanatory Multiverse Through Counterfactual Path Geometry
Navigating Explanatory Multiverse Through Counterfactual Path Geometry
Kacper Sokol
E. Small
Yueqing Xuan
32
5
0
05 Jun 2023
Counterfactual Plans under Distributional Ambiguity
Counterfactual Plans under Distributional Ambiguity
N. Bui
D. Nguyen
Viet Anh Nguyen
54
24
0
29 Jan 2022
Diverse, Global and Amortised Counterfactual Explanations for
  Uncertainty Estimates
Diverse, Global and Amortised Counterfactual Explanations for Uncertainty Estimates
Dan Ley
Umang Bhatt
Adrian Weller
UQCV
168
21
0
05 Dec 2021
A Few Good Counterfactuals: Generating Interpretable, Plausible and
  Diverse Counterfactual Explanations
A Few Good Counterfactuals: Generating Interpretable, Plausible and Diverse Counterfactual Explanations
Barry Smyth
Mark T. Keane
CML
32
26
0
22 Jan 2021
GeCo: Quality Counterfactual Explanations in Real Time
GeCo: Quality Counterfactual Explanations in Real Time
Maximilian Schleich
Zixuan Geng
Yihong Zhang
D. Suciu
38
61
0
05 Jan 2021
Issues with post-hoc counterfactual explanations: a discussion
Issues with post-hoc counterfactual explanations: a discussion
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
99
44
0
11 Jun 2019
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
225
3,681
0
28 Feb 2017
1