Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.05890
Cited By
CUTS+: High-dimensional Causal Discovery from Irregular Time-series
10 May 2023
Yuxiao Cheng
Lianglong Li
Tingxiong Xiao
Zongren Li
Qionghai Dai
J. Suo
K. He
CML
BDL
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CUTS+: High-dimensional Causal Discovery from Irregular Time-series"
14 / 14 papers shown
Title
Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Albert Wilcox
Mohamed Ghanem
Masoud Moghani
Pierre Barroso
Benjamin Joffe
Animesh Garg
41
0
0
06 Mar 2025
Time Series Domain Adaptation via Latent Invariant Causal Mechanism
Ruichu Cai
Junxian Huang
Zhenhui Yang
Zijian Li
Emadeldeen Eldele
Min Wu
Fuchun Sun
OOD
CML
BDL
AI4TS
46
0
0
23 Feb 2025
Causally-informed Deep Learning towards Explainable and Generalizable Outcomes Prediction in Critical Care
Yuxiao Cheng
Xinxin Song
Ziqian Wang
Qin Zhong
Kunlun He
J. Suo
OOD
CML
83
0
0
04 Feb 2025
LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Yue Cheng
Jiajun Zhang
Weiwei Xing
Xiaoyu Guo
Yue Cheng
Witold Pedrycz
CML
27
0
0
25 Oct 2024
Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks
Rujia Shen
Boran Wang
Chao Zhao
Yi Guan
Jingchi Jiang
CML
BDL
AI4TS
14
0
0
15 Aug 2024
Learning Flexible Time-windowed Granger Causality Integrating Heterogeneous Interventional Time Series Data
Ziyi Zhang
Shaogang Ren
Xiaoning Qian
Nick Duffield
AI4TS
CML
22
3
0
14 Jun 2024
OCDB: Revisiting Causal Discovery with a Comprehensive Benchmark and Evaluation Framework
Wei Zhou
Hong Huang
Guowen Zhang
Ruize Shi
Kehan Yin
Yuanyuan Lin
Bang Liu
CML
31
1
0
07 Jun 2024
Jacobian Regularizer-based Neural Granger Causality
Wanqi Zhou
Shuanghao Bai
Shujian Yu
Qibin Zhao
Badong Chen
CML
20
3
0
14 May 2024
Bayesian Vector AutoRegression with Factorised Granger-Causal Graphs
He Zhao
V. Kitsios
Terry O'Kane
Edwin V. Bonilla
CML
24
1
0
06 Feb 2024
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
14
11
0
03 Oct 2023
Dynamic Causal Explanation Based Diffusion-Variational Graph Neural Network for Spatio-temporal Forecasting
G. Liang
Prayag Tiwari
Sławomir Nowaczyk
Stefan Byttner
F. Alonso-Fernandez
DiffM
12
11
0
16 May 2023
Causal Discovery from Temporal Data: An Overview and New Perspectives
Chang Gong
Di Yao
Chuzhe Zhang
Wenbin Li
Jingping Bi
AI4TS
CML
11
17
0
17 Mar 2023
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
Chris Cundy
Aditya Grover
Stefano Ermon
CML
32
71
0
06 Dec 2021
Recurrent Neural Networks for Multivariate Time Series with Missing Values
Zhengping Che
S. Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
AI4TS
194
1,674
0
06 Jun 2016
1