ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.09017
  4. Cited By
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with
  Physics Prior

Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior

15 May 2023
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
    PINN
ArXivPDFHTML

Papers citing "Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior"

8 / 8 papers shown
Title
Plug-and-Play Physics-informed Learning using Uncertainty Quantified Port-Hamiltonian Models
Plug-and-Play Physics-informed Learning using Uncertainty Quantified Port-Hamiltonian Models
Kaiyuan Tan
Peilun Li
J. Wang
Thomas Beckers
AI4CE
17
0
0
24 Apr 2025
Data-driven identification of latent port-Hamiltonian systems
Data-driven identification of latent port-Hamiltonian systems
J. Rettberg
Jonas Kneifl
Julius Herb
Patrick Buchfink
Jörg Fehr
B. Haasdonk
PINN
19
2
0
15 Aug 2024
Combining Federated Learning and Control: A Survey
Combining Federated Learning and Control: A Survey
Jakob Weber
Markus Gurtner
A. Lobe
Adrian Trachte
Andreas Kugi
FedML
AI4CE
26
2
0
12 Jul 2024
Data-driven identification of port-Hamiltonian DAE systems by Gaussian
  processes
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Peter Zaspel
Michael Günther
28
2
0
26 Jun 2024
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics
  Learning and Control
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay A. Atanasov
28
10
0
17 Jan 2024
Gaussian process learning of nonlinear dynamics
Gaussian process learning of nonlinear dynamics
Dongwei Ye
Mengwu Guo
18
4
0
19 Dec 2023
Neural Autoencoder-Based Structure-Preserving Model Order Reduction and
  Control Design for High-Dimensional Physical Systems
Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems
Marco Lepri
Davide Bacciu
Cosimo Della Santina
AI4CE
35
8
0
11 Dec 2023
Learning Switching Port-Hamiltonian Systems with Uncertainty
  Quantification
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification
Thomas Beckers
Tom Z. Jiahao
George J. Pappas
31
2
0
15 May 2023
1