Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.10391
Cited By
Optimality of Message-Passing Architectures for Sparse Graphs
10 January 2025
Aseem Baranwal
K. Fountoulakis
Aukosh Jagannath
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimality of Message-Passing Architectures for Sparse Graphs"
17 / 17 papers shown
Title
Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block model
O. Duranthon
L. Zdeborová
36
0
0
03 Mar 2025
Optimal Exact Recovery in Semi-Supervised Learning: A Study of Spectral Methods and Graph Convolutional Networks
Hai-Xiao Wang
Zhichao Wang
63
1
0
18 Dec 2024
The Intelligible and Effective Graph Neural Additive Networks
Maya Bechler-Speicher
Amir Globerson
Ran Gilad-Bachrach
25
1
0
03 Jun 2024
Analysis of Corrected Graph Convolutions
Robert Wang
Aseem Baranwal
K. Fountoulakis
21
0
0
22 May 2024
Asymptotic generalization error of a single-layer graph convolutional network
O. Duranthon
L. Zdeborová
MLT
25
2
0
06 Feb 2024
TacticAI: an AI assistant for football tactics
Zhe Wang
Petar Velickovic
Daniel Hennes
Nenad Tomašev
Laurel Prince
...
Pol Moreno
N. Heess
Michael H. Bowling
Demis Hassabis
K. Tuyls
43
42
0
16 Oct 2023
Asynchronous Algorithmic Alignment with Cocycles
Andrew Dudzik
Tamara von Glehn
Razvan Pascanu
Petar Velivcković
21
9
0
27 Jun 2023
Optimal Inference in Contextual Stochastic Block Models
O. Duranthon
L. Zdeborová
BDL
22
8
0
06 Jun 2023
Revisiting Robustness in Graph Machine Learning
Lukas Gosch
Daniel Sturm
Simon Geisler
Stephan Günnemann
AAML
OOD
53
21
0
01 May 2023
Homophily modulates double descent generalization in graph convolution networks
Chengzhi Shi
Liming Pan
Hong Hu
Ivan Dokmanić
21
9
0
26 Dec 2022
Message passing all the way up
Petar Velickovic
103
63
0
22 Feb 2022
Generalization Analysis of Message Passing Neural Networks on Large Random Graphs
Sohir Maskey
Ron Levie
Yunseok Lee
Gitta Kutyniok
GNN
73
53
0
01 Feb 2022
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction
Eli Chien
Wei-Cheng Chang
Cho-Jui Hsieh
Hsiang-Fu Yu
Jiong Zhang
O. Milenkovic
Inderjit S Dhillon
131
130
0
29 Oct 2021
Contextual Stochastic Block Models
Y. Deshpande
Andrea Montanari
Elchanan Mossel
S. Sen
98
131
0
23 Jul 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
217
1,726
0
09 Jun 2018
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
252
1,394
0
01 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
231
1,801
0
25 Nov 2016
1