Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.15155
Cited By
Momentum Provably Improves Error Feedback!
24 May 2023
Ilyas Fatkhullin
A. Tyurin
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Momentum Provably Improves Error Feedback!"
22 / 22 papers shown
Title
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
43
0
0
11 Mar 2025
Smoothed Normalization for Efficient Distributed Private Optimization
Egor Shulgin
Sarit Khirirat
Peter Richtárik
FedML
82
0
0
20 Feb 2025
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
28
0
0
11 Nov 2024
Error Feedback under
(
L
0
,
L
1
)
(L_0,L_1)
(
L
0
,
L
1
)
-Smoothness: Normalization and Momentum
Sarit Khirirat
Abdurakhmon Sadiev
Artem Riabinin
Eduard A. Gorbunov
Peter Richtárik
20
0
0
22 Oct 2024
Byzantine-Robust and Communication-Efficient Distributed Learning via Compressed Momentum Filtering
Changxin Liu
Yanghao Li
Yuhao Yi
Karl H. Johansson
FedML
26
0
0
13 Sep 2024
LoCo: Low-Bit Communication Adaptor for Large-scale Model Training
Xingyu Xie
Zhijie Lin
Kim-Chuan Toh
Pan Zhou
21
2
0
05 Jul 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
21
6
0
05 Mar 2024
Taming Nonconvex Stochastic Mirror Descent with General Bregman Divergence
Ilyas Fatkhullin
Niao He
27
3
0
27 Feb 2024
EControl: Fast Distributed Optimization with Compression and Error Control
Yuan Gao
Rustem Islamov
Sebastian U. Stich
25
6
0
06 Nov 2023
Revisiting Decentralized ProxSkip: Achieving Linear Speedup
Luyao Guo
Sulaiman A. Alghunaim
Kun Yuan
Laurent Condat
Jinde Cao
FedML
19
1
0
12 Oct 2023
Stochastic Controlled Averaging for Federated Learning with Communication Compression
Xinmeng Huang
Ping Li
Xiaoyun Li
30
194
0
16 Aug 2023
Momentum Benefits Non-IID Federated Learning Simply and Provably
Ziheng Cheng
Xinmeng Huang
Pengfei Wu
Kun Yuan
FedML
21
16
0
28 Jun 2023
Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin
Peter Richtárik
AI4CE
16
6
0
28 Jun 2023
EF21-P and Friends: Improved Theoretical Communication Complexity for Distributed Optimization with Bidirectional Compression
Kaja Gruntkowska
A. Tyurin
Peter Richtárik
36
21
0
30 Sep 2022
DASHA: Distributed Nonconvex Optimization with Communication Compression, Optimal Oracle Complexity, and No Client Synchronization
A. Tyurin
Peter Richtárik
32
17
0
02 Feb 2022
Permutation Compressors for Provably Faster Distributed Nonconvex Optimization
Rafal Szlendak
A. Tyurin
Peter Richtárik
113
35
0
07 Oct 2021
EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin
Igor Sokolov
Eduard A. Gorbunov
Zhize Li
Peter Richtárik
42
44
0
07 Oct 2021
SGD: The Role of Implicit Regularization, Batch-size and Multiple-epochs
Satyen Kale
Ayush Sekhari
Karthik Sridharan
173
29
0
11 Jul 2021
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
163
77
0
23 Oct 2020
A High Probability Analysis of Adaptive SGD with Momentum
Xiaoyun Li
Francesco Orabona
79
64
0
28 Jul 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,698
0
18 Mar 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
1