Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2305.17476
Cited By
Toward Understanding Generative Data Augmentation
27 May 2023
Chenyu Zheng
Guoqiang Wu
Chongxuan Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Toward Understanding Generative Data Augmentation"
19 / 19 papers shown
Title
Rare event modeling with self-regularized normalizing flows: what can we learn from a single failure?
Charles Dawson
Van Tran
Max Z. Li
Chuchu Fan
42
0
0
28 Feb 2025
A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops
Shi Fu
Yingjie Wang
Yuzhu Chen
Xinmei Tian
Dacheng Tao
48
1
0
26 Feb 2025
Generating Synthetic Electronic Health Record (EHR) Data: A Review with Benchmarking
Xingran Chen
Zhenke Wu
Xu Shi
Hyunghoon Cho
Bhramar Mukherjee
SyDa
26
1
0
06 Nov 2024
Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting
Adrian B. Chłopowiec
Adam R. Chłopowiec
Krzysztof Galus
Wojciech Cebula
Martin Tabakov
MedIm
33
0
0
05 Nov 2024
Will the Inclusion of Generated Data Amplify Bias Across Generations in Future Image Classification Models?
Zeliang Zhang
Xin Liang
Mingqian Feng
Susan Liang
Chenliang Xu
34
1
0
14 Oct 2024
Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective
Zeyu Gan
Yong Liu
SyDa
39
1
0
02 Oct 2024
Self-play with Execution Feedback: Improving Instruction-following Capabilities of Large Language Models
Guanting Dong
K. Lu
Chengpeng Li
Tingyu Xia
Bowen Yu
Chang Zhou
Jingren Zhou
SyDa
ALM
LRM
47
13
0
19 Jun 2024
LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data
Grigor Bezirganyan
Sana Sellami
Laure Berti-Équille
Sébastien Fournier
19
3
0
14 Jun 2024
Weights Augmentation: it has never ever ever ever let her model down
Junbin Zhuang
Guiguang Din
Yunyi Yan
18
1
0
30 May 2024
On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability
Chenyu Zheng
Wei Huang
Rongzheng Wang
Guoqiang Wu
Jun Zhu
Chongxuan Li
34
1
0
27 May 2024
Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model
Zhicai Wang
Longhui Wei
Tan Wang
Heyu Chen
Yanbin Hao
Xiang Wang
Xiangnan He
Qi Tian
VLM
DiffM
27
16
0
28 Mar 2024
Data Optimization in Deep Learning: A Survey
Ou Wu
Rujing Yao
28
1
0
25 Oct 2023
Filling the Missing: Exploring Generative AI for Enhanced Federated Learning over Heterogeneous Mobile Edge Devices
Peichun Li
Hanwen Zhang
Yuan Wu
Liping Qian
Rong Yu
Dusit Niyato
X. Shen
25
25
0
21 Oct 2023
A Unified Framework for Generative Data Augmentation: A Comprehensive Survey
Yunhao Chen
Zihui Yan
Yunjie Zhu
17
3
0
30 Sep 2023
One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale
Fan Bao
Shen Nie
Kaiwen Xue
Chongxuan Li
Shiliang Pu
Yaole Wang
Gang Yue
Yue Cao
Hang Su
Jun Zhu
DiffM
199
148
0
12 Mar 2023
Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels
Zebin You
Yong Zhong
Fan Bao
Jiacheng Sun
Chongxuan Li
Jun Zhu
DiffM
VLM
198
35
0
21 Feb 2023
Convergence of score-based generative modeling for general data distributions
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
177
128
0
26 Sep 2022
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
123
245
0
22 Sep 2022
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,764
0
24 Feb 2021
1