ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.18258
  4. Cited By
Maximize to Explore: One Objective Function Fusing Estimation, Planning,
  and Exploration

Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration

29 May 2023
Zhihan Liu
Miao Lu
Wei Xiong
Han Zhong
Haotian Hu
Shenao Zhang
Sirui Zheng
Zhuoran Yang
Zhaoran Wang
    OffRL
ArXivPDFHTML

Papers citing "Maximize to Explore: One Objective Function Fusing Estimation, Planning, and Exploration"

12 / 12 papers shown
Title
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
Shicong Cen
Jincheng Mei
Katayoon Goshvadi
Hanjun Dai
Tong Yang
Sherry Yang
Dale Schuurmans
Yuejie Chi
Bo Dai
OffRL
60
23
0
20 Feb 2025
Incentivize without Bonus: Provably Efficient Model-based Online Multi-agent RL for Markov Games
Incentivize without Bonus: Provably Efficient Model-based Online Multi-agent RL for Markov Games
Tong Yang
Bo Dai
Lin Xiao
Yuejie Chi
OffRL
56
2
0
13 Feb 2025
Sharp Analysis for KL-Regularized Contextual Bandits and RLHF
Sharp Analysis for KL-Regularized Contextual Bandits and RLHF
Heyang Zhao
Chenlu Ye
Quanquan Gu
Tong Zhang
OffRL
47
3
0
07 Nov 2024
Combinatorial Multivariant Multi-Armed Bandits with Applications to Episodic Reinforcement Learning and Beyond
Combinatorial Multivariant Multi-Armed Bandits with Applications to Episodic Reinforcement Learning and Beyond
Xutong Liu
Siwei Wang
Jinhang Zuo
Han Zhong
Xuchuang Wang
Zhiyong Wang
Shuai Li
Mohammad Hajiesmaili
J. C. Lui
Wei Chen
79
0
0
03 Jun 2024
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
13
20
0
29 May 2023
A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games
A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games
Wei Xiong
Han Zhong
Chengshuai Shi
Cong Shen
Tong Zhang
37
19
0
04 Oct 2022
A General Framework for Sample-Efficient Function Approximation in
  Reinforcement Learning
A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning
Zixiang Chen
C. J. Li
An Yuan
Quanquan Gu
Michael I. Jordan
OffRL
108
26
0
30 Sep 2022
Provably Efficient Reinforcement Learning in Partially Observable
  Dynamical Systems
Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems
Masatoshi Uehara
Ayush Sekhari
Jason D. Lee
Nathan Kallus
Wen Sun
OffRL
47
31
0
24 Jun 2022
Pessimism in the Face of Confounders: Provably Efficient Offline
  Reinforcement Learning in Partially Observable Markov Decision Processes
Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes
Miao Lu
Yifei Min
Zhaoran Wang
Zhuoran Yang
OffRL
36
22
0
26 May 2022
Embed to Control Partially Observed Systems: Representation Learning
  with Provable Sample Efficiency
Embed to Control Partially Observed Systems: Representation Learning with Provable Sample Efficiency
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
41
17
0
26 May 2022
Mismatched No More: Joint Model-Policy Optimization for Model-Based RL
Mismatched No More: Joint Model-Policy Optimization for Model-Based RL
Benjamin Eysenbach
Alexander Khazatsky
Sergey Levine
Ruslan Salakhutdinov
OffRL
185
43
0
06 Oct 2021
Optimism in Reinforcement Learning with Generalized Linear Function
  Approximation
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
127
135
0
09 Dec 2019
1