ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2305.19600
  4. Cited By
Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous
  Federated Learning

Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous Federated Learning

31 May 2023
M.Yashwanth
Gaurav Kumar Nayak
Aryaveer Singh
Yogesh Singh
Anirban Chakraborty
    FedML
ArXivPDFHTML

Papers citing "Adaptive Self-Distillation for Minimizing Client Drift in Heterogeneous Federated Learning"

4 / 4 papers shown
Title
FedSpeed: Larger Local Interval, Less Communication Round, and Higher
  Generalization Accuracy
FedSpeed: Larger Local Interval, Less Communication Round, and Higher Generalization Accuracy
Yan Sun
Li Shen
Tiansheng Huang
Liang Ding
Dacheng Tao
FedML
29
50
0
21 Feb 2023
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
167
410
0
14 Jul 2021
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,690
0
18 Mar 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,878
0
15 Sep 2016
1