ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.03828
  4. Cited By
Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How

Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How

6 June 2023
Sebastian Pineda Arango
Fabio Ferreira
Arlind Kadra
Frank Hutter
Frank Hutter Josif Grabocka
ArXivPDFHTML

Papers citing "Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How"

14 / 14 papers shown
Title
Benchmarking Image Embeddings for E-Commerce: Evaluating Off-the Shelf Foundation Models, Fine-Tuning Strategies and Practical Trade-offs
Benchmarking Image Embeddings for E-Commerce: Evaluating Off-the Shelf Foundation Models, Fine-Tuning Strategies and Practical Trade-offs
Urszula Czerwinska
Cenk Bircanoglu
Jeremy Chamoux
21
0
0
10 Apr 2025
Bag of Tricks for Multimodal AutoML with Image, Text, and Tabular Data
Bag of Tricks for Multimodal AutoML with Image, Text, and Tabular Data
Zhiqiang Tang
Zihan Zhong
Tong He
Gerald Friedland
73
0
0
19 Dec 2024
Transfer Learning for Finetuning Large Language Models
Transfer Learning for Finetuning Large Language Models
Tobias Strangmann
Lennart Purucker
Jörg K.H. Franke
Ivo Rapant
Fabio Ferreira
Frank Hutter
34
0
0
02 Nov 2024
Ensembling Finetuned Language Models for Text Classification
Ensembling Finetuned Language Models for Text Classification
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
18
0
0
25 Oct 2024
Varying Shades of Wrong: Aligning LLMs with Wrong Answers Only
Varying Shades of Wrong: Aligning LLMs with Wrong Answers Only
Jihan Yao
Wenxuan Ding
Shangbin Feng
Lucy Lu Wang
Yulia Tsvetkov
25
0
0
14 Oct 2024
Dynamic Post-Hoc Neural Ensemblers
Dynamic Post-Hoc Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
29
0
0
06 Oct 2024
OOD-Chameleon: Is Algorithm Selection for OOD Generalization Learnable?
OOD-Chameleon: Is Algorithm Selection for OOD Generalization Learnable?
Liangze Jiang
Damien Teney
OODD
OOD
21
1
0
03 Oct 2024
Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of
  Learning Curve Extrapolation
Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation
Dong Bok Lee
Aoxuan Silvia Zhang
Byung-Hoon Kim
Junhyeon Park
Juho Lee
Sung Ju Hwang
Haebeom Lee
19
1
0
28 May 2024
AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with
  Foundation Models
AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models
Zhiqiang Tang
Haoyang Fang
Su Zhou
Taojiannan Yang
Zihan Zhong
Tony Hu
Katrin Kirchhoff
George Karypis
25
11
0
24 Apr 2024
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its
  AutoML Applications
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
David Salinas
Nick Erickson
14
10
0
06 Nov 2023
Deep Ranking Ensembles for Hyperparameter Optimization
Deep Ranking Ensembles for Hyperparameter Optimization
Abdus Salam Khazi
Sebastian Pineda Arango
Josif Grabocka
BDL
13
7
0
27 Mar 2023
Model Zoos: A Dataset of Diverse Populations of Neural Network Models
Model Zoos: A Dataset of Diverse Populations of Neural Network Models
Konstantin Schurholt
Diyar Taskiran
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
39
29
0
29 Sep 2022
Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting
  Model Hubs
Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs
Kaichao You
Yong Liu
Ziyang Zhang
Jianmin Wang
Michael I. Jordan
Mingsheng Long
98
30
0
20 Oct 2021
Transferability and Hardness of Supervised Classification Tasks
Transferability and Hardness of Supervised Classification Tasks
Anh Tran
Cuong V Nguyen
Tal Hassner
134
163
0
21 Aug 2019
1