ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.04072
  4. Cited By
Exploring Simple, High Quality Out-of-Distribution Detection with L2
  Normalization

Exploring Simple, High Quality Out-of-Distribution Detection with L2 Normalization

7 June 2023
J. Haas
William Yolland
B. Rabus
    OODD
ArXivPDFHTML

Papers citing "Exploring Simple, High Quality Out-of-Distribution Detection with L2 Normalization"

8 / 8 papers shown
Title
Linking Neural Collapse and L2 Normalization with Improved
  Out-of-Distribution Detection in Deep Neural Networks
Linking Neural Collapse and L2 Normalization with Improved Out-of-Distribution Detection in Deep Neural Networks
J. Haas
William Yolland
B. Rabus
OODD
41
14
0
17 Sep 2022
Mitigating Neural Network Overconfidence with Logit Normalization
Mitigating Neural Network Overconfidence with Logit Normalization
Hongxin Wei
Renchunzi Xie
Hao-Ran Cheng
Lei Feng
Bo An
Yixuan Li
OODD
163
266
0
19 May 2022
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
Open-Set Recognition: a Good Closed-Set Classifier is All You Need?
S. Vaze
Kai Han
Andrea Vedaldi
Andrew Zisserman
BDL
167
404
0
12 Oct 2021
An Unconstrained Layer-Peeled Perspective on Neural Collapse
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji
Yiping Lu
Yiliang Zhang
Zhun Deng
Weijie J. Su
125
83
0
06 Oct 2021
Dissecting Supervised Contrastive Learning
Dissecting Supervised Contrastive Learning
Florian Graf
Christoph Hofer
Marc Niethammer
Roland Kwitt
SSL
109
69
0
17 Feb 2021
Robust Out-of-distribution Detection for Neural Networks
Robust Out-of-distribution Detection for Neural Networks
Jiefeng Chen
Yixuan Li
Xi Wu
Yingyu Liang
S. Jha
OODD
150
84
0
21 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
268
5,652
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,109
0
06 Jun 2015
1