ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.09467
  4. Cited By
AQuA: A Benchmarking Tool for Label Quality Assessment

AQuA: A Benchmarking Tool for Label Quality Assessment

15 June 2023
Mononito Goswami
Vedant Sanil
Arjun Choudhry
Arvind Srinivasan
Chalisa Udompanyawit
Artur Dubrawski
ArXivPDFHTML

Papers citing "AQuA: A Benchmarking Tool for Label Quality Assessment"

9 / 9 papers shown
Title
Investigating Compositional Reasoning in Time Series Foundation Models
Willa Potosnak
Cristian Challu
Mononito Goswami
Kin G. Olivares
Michał Wiliński
Nina Żukowska
Artur Dubrawski
ReLM
AI4TS
LRM
46
0
0
09 Feb 2025
Noisy Ostracods: A Fine-Grained, Imbalanced Real-World Dataset for
  Benchmarking Robust Machine Learning and Label Correction Methods
Noisy Ostracods: A Fine-Grained, Imbalanced Real-World Dataset for Benchmarking Robust Machine Learning and Label Correction Methods
Jiamian Hu
Yuanyuan Hong
Yihua Chen
He Wang
Moriaki Yasuhara
56
0
0
03 Dec 2024
MOMENT: A Family of Open Time-series Foundation Models
MOMENT: A Family of Open Time-series Foundation Models
Mononito Goswami
Konrad Szafer
Arjun Choudhry
Yifu Cai
Shuo Li
Artur Dubrawski
AIFin
AI4TS
60
107
0
06 Feb 2024
Detecting Label Errors by using Pre-Trained Language Models
Detecting Label Errors by using Pre-Trained Language Models
Derek Chong
Jenny Hong
Christopher D. Manning
NoLa
33
15
0
25 May 2022
Detecting Corrupted Labels Without Training a Model to Predict
Detecting Corrupted Labels Without Training a Model to Predict
Zhaowei Zhu
Zihao Dong
Yang Liu
NoLa
135
61
0
12 Oct 2021
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
Xin Huang
A. Khetan
Milan Cvitkovic
Zohar S. Karnin
ViT
LMTD
140
412
0
11 Dec 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
261
10,106
0
16 Nov 2016
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
279
39,083
0
01 Sep 2014
1