Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.11700
Cited By
Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs
20 June 2023
Dongsheng Ding
Chen-Yu Wei
K. Zhang
Alejandro Ribeiro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs"
13 / 13 papers shown
Title
Near-Optimal Policy Identification in Robust Constrained Markov Decision Processes via Epigraph Form
Toshinori Kitamura
Tadashi Kozuno
Wataru Kumagai
Kenta Hoshino
Y. Hosoe
Kazumi Kasaura
Masashi Hamaya
Paavo Parmas
Yutaka Matsuo
70
0
0
29 Aug 2024
One-Shot Safety Alignment for Large Language Models via Optimal Dualization
Xinmeng Huang
Shuo Li
Edgar Dobriban
Osbert Bastani
Hamed Hassani
Dongsheng Ding
36
3
0
29 May 2024
A Best-of-Both-Worlds Algorithm for Constrained MDPs with Long-Term Constraints
Jacopo Germano
Francesco Emanuele Stradi
Gianmarco Genalti
Matteo Castiglioni
A. Marchesi
N. Gatti
21
9
0
27 Apr 2023
Provably Efficient Model-Free Constrained RL with Linear Function Approximation
A. Ghosh
Xingyu Zhou
Ness B. Shroff
64
23
0
23 Jun 2022
Policy-based Primal-Dual Methods for Concave CMDP with Variance Reduction
Donghao Ying
Mengzi Guo
Hyunin Lee
Yuhao Ding
Javad Lavaei
Zuo‐Jun Max Shen
22
4
0
22 May 2022
A Review of Safe Reinforcement Learning: Methods, Theory and Applications
Shangding Gu
Longyu Yang
Yali Du
Guang Chen
Florian Walter
Jun Wang
Alois C. Knoll
OffRL
AI4TS
111
233
0
20 May 2022
Learning Infinite-Horizon Average-Reward Markov Decision Processes with Constraints
Liyu Chen
R. Jain
Haipeng Luo
36
25
0
31 Jan 2022
Finite-Time Complexity of Online Primal-Dual Natural Actor-Critic Algorithm for Constrained Markov Decision Processes
Sihan Zeng
Thinh T. Doan
J. Romberg
87
17
0
21 Oct 2021
Achieving Zero Constraint Violation for Constrained Reinforcement Learning via Primal-Dual Approach
Qinbo Bai
Amrit Singh Bedi
Mridul Agarwal
Alec Koppel
Vaneet Aggarwal
99
56
0
13 Sep 2021
Policy Mirror Descent for Reinforcement Learning: Linear Convergence, New Sampling Complexity, and Generalized Problem Classes
Guanghui Lan
87
135
0
30 Jan 2021
Provably Efficient Reinforcement Learning with Linear Function Approximation Under Adaptivity Constraints
Chi Jin
Zhuoran Yang
Zhaoran Wang
OffRL
107
166
0
06 Jan 2021
On Linear Convergence of Policy Gradient Methods for Finite MDPs
Jalaj Bhandari
Daniel Russo
48
59
0
21 Jul 2020
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
111
259
0
10 Dec 2012
1