Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2306.11943
Cited By
Towards Understanding What Code Language Models Learned
20 June 2023
Toufique Ahmed
Dian Yu
Chen Huang
Cathy Wang
Prem Devanbu
Kenji Sagae
ELM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Understanding What Code Language Models Learned"
8 / 8 papers shown
Title
Do Current Language Models Support Code Intelligence for R Programming Language?
Zixiao Zhao
Fatemeh H. Fard
ELM
35
0
0
10 Oct 2024
CodeGen2: Lessons for Training LLMs on Programming and Natural Languages
Erik Nijkamp
A. Ghobadzadeh
Caiming Xiong
Silvio Savarese
Yingbo Zhou
144
163
0
03 May 2023
Redundancy and Concept Analysis for Code-trained Language Models
Arushi Sharma
Zefu Hu
Christopher Quinn
Ali Jannesari
42
1
0
01 May 2023
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
301
11,730
0
04 Mar 2022
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
Jason W. Wei
Xuezhi Wang
Dale Schuurmans
Maarten Bosma
Brian Ichter
F. Xia
Ed H. Chi
Quoc Le
Denny Zhou
LM&Ro
LRM
AI4CE
ReLM
315
8,261
0
28 Jan 2022
NOPE: A Corpus of Naturally-Occurring Presuppositions in English
Alicia Parrish
Sebastian Schuster
Alex Warstadt
Omar Agha
Soo-hwan Lee
Zhuoye Zhao
Sam Bowman
Tal Linzen
LRM
28
23
0
14 Sep 2021
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation
Shuai Lu
Daya Guo
Shuo Ren
Junjie Huang
Alexey Svyatkovskiy
...
Nan Duan
Neel Sundaresan
Shao Kun Deng
Shengyu Fu
Shujie Liu
ELM
190
853
0
09 Feb 2021
Semantic Robustness of Models of Source Code
Goutham Ramakrishnan
Jordan Henkel
Zi Wang
Aws Albarghouthi
S. Jha
Thomas W. Reps
SILM
AAML
35
95
0
07 Feb 2020
1