ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2306.12962
  4. Cited By
PyKoopman: A Python Package for Data-Driven Approximation of the Koopman
  Operator

PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator

22 June 2023
Shaowu Pan
E. Kaiser
Brian M. de Silva
J. Nathan Kutz
Steven L. Brunton
ArXivPDFHTML

Papers citing "PyKoopman: A Python Package for Data-Driven Approximation of the Koopman Operator"

6 / 6 papers shown
Title
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
Chuanqi Chen
Nan Chen
Yinling Zhang
Jin-Long Wu
AI4CE
30
2
0
26 Oct 2024
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Julius Aka
Johannes Brunnemann
Jörg Eiden
Arne Speerforck
Lars Mikelsons
18
0
0
14 Oct 2024
Koopman Operators in Robot Learning
Koopman Operators in Robot Learning
Lu Shi
Masih Haseli
Giorgos Mamakoukas
Daniel Bruder
Ian Abraham
Todd D. Murphey
Jorge Cortes
Konstantinos Karydis
AI4CE
14
7
0
08 Aug 2024
On the lifting and reconstruction of nonlinear systems with multiple
  invariant sets
On the lifting and reconstruction of nonlinear systems with multiple invariant sets
Shaowu Pan
Karthik Duraisamy
31
3
0
24 Apr 2023
The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving
  Dynamical Systems
The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving Dynamical Systems
Matthew J. Colbrook
23
34
0
06 Sep 2022
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
109
355
0
30 Oct 2017
1