ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.01198
  4. Cited By
Improved sampling via learned diffusions

Improved sampling via learned diffusions

3 July 2023
Lorenz Richter
Julius Berner
    DiffM
ArXivPDFHTML

Papers citing "Improved sampling via learned diffusions"

41 / 41 papers shown
Title
Normalize Everything: A Preconditioned Magnitude-Preserving Architecture for Diffusion-Based Speech Enhancement
Normalize Everything: A Preconditioned Magnitude-Preserving Architecture for Diffusion-Based Speech Enhancement
Julius Richter
Danilo de Oliveira
Timo Gerkmann
DiffM
48
0
0
08 May 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
43
0
0
16 Apr 2025
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
47
0
0
11 Apr 2025
Underdamped Diffusion Bridges with Applications to Sampling
Denis Blessing
Julius Berner
Lorenz Richter
Gerhard Neumann
DiffM
34
1
0
02 Mar 2025
End-To-End Learning of Gaussian Mixture Priors for Diffusion Sampler
Denis Blessing
Xiaogang Jia
Gerhard Neumann
DiffM
43
0
0
01 Mar 2025
Value Gradient Sampler: Sampling as Sequential Decision Making
Value Gradient Sampler: Sampling as Sequential Decision Making
Sangwoong Yoon
Himchan Hwang
Hyeokju Jeong
Dong Kyu Shin
Che-Sang Park
Sehee Kwon
Frank C. Park
69
0
0
18 Feb 2025
Single-Step Consistent Diffusion Samplers
Single-Step Consistent Diffusion Samplers
Pascal Jutras-Dubé
Patrick Pynadath
Ruqi Zhang
DiffM
73
0
0
17 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
56
3
0
10 Jan 2025
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
51
0
0
03 Jan 2025
Streaming Bayes GFlowNets
Streaming Bayes GFlowNets
Tiago da Silva
Daniel Augusto R. M. A. de Souza
Diego Mesquita
BDL
28
0
0
08 Nov 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
29
2
0
25 Oct 2024
Latent Abstractions in Generative Diffusion Models
Latent Abstractions in Generative Diffusion Models
Giulio Franzese
Mattia Martini
Giulio Corallo
Paolo Papotti
Pietro Michiardi
DiffM
31
0
0
04 Oct 2024
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Mohammad R. Rezaei
Rahul G. Krishnan
Milos R. Popovic
M. Lankarany
DiffM
19
0
0
22 Sep 2024
Importance Corrected Neural JKO Sampling
Importance Corrected Neural JKO Sampling
Johannes Hertrich
Robert Gruhlke
26
1
0
29 Jul 2024
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Dynamical Measure Transport and Neural PDE Solvers for Sampling
Jingtong Sun
Julius Berner
Lorenz Richter
Marius Zeinhofer
Johannes Müller
Kamyar Azizzadenesheli
Anima Anandkumar
OT
DiffM
29
8
0
10 Jul 2024
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for
  Sampling
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
Denis Blessing
Xiaogang Jia
Johannes Esslinger
Francisco Vargas
Gerhard Neumann
45
15
0
11 Jun 2024
A Diffusion Model Framework for Unsupervised Neural Combinatorial
  Optimization
A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization
Sebastian Sanokowski
Sepp Hochreiter
Sebastian Lehner
27
16
0
03 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
60
24
0
31 May 2024
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Stochastic Optimal Control for Diffusion Bridges in Function Spaces
Byoungwoo Park
Jungwon Choi
Sungbin Lim
Juho Lee
45
3
0
31 May 2024
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
  Flows
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
A. Cabezas
Louis Sharrock
Christopher Nemeth
34
1
0
23 May 2024
Control, Transport and Sampling: Towards Better Loss Design
Control, Transport and Sampling: Towards Better Loss Design
Qijia Jiang
David Nabergoj
OT
22
0
0
22 May 2024
Bridging discrete and continuous state spaces: Exploring the Ehrenfest
  process in time-continuous diffusion models
Bridging discrete and continuous state spaces: Exploring the Ehrenfest process in time-continuous diffusion models
Ludwig Winkler
Lorenz Richter
Manfred Opper
46
2
0
06 May 2024
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Soft-constrained Schrodinger Bridge: a Stochastic Control Approach
Jhanvi Garg
Xianyang Zhang
Quan Zhou
DiffM
OT
27
0
0
04 Mar 2024
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions:
  Alleviating Metastability by Denoising Diffusion
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
Ye He
Kevin Rojas
Molei Tao
DiffM
28
8
0
27 Feb 2024
Stochastic Localization via Iterative Posterior Sampling
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
31
11
0
16 Feb 2024
Target Score Matching
Target Score Matching
Valentin De Bortoli
M. Hutchinson
Peter Wirnsberger
Arnaud Doucet
DiffM
28
17
0
13 Feb 2024
Particle Denoising Diffusion Sampler
Particle Denoising Diffusion Sampler
Angus Phillips
Hai-Dang Dau
M. Hutchinson
Valentin De Bortoli
George Deligiannidis
Arnaud Doucet
DiffM
54
25
0
09 Feb 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
27
41
0
09 Feb 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
62
16
0
07 Feb 2024
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
Laurence Perreault Levasseur
Y. Hezaveh
Laurence Perreault-Levasseur
Yashar Hezaveh
19
3
0
06 Feb 2024
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo-Ordoñez
Matthieu Meunier
Francesco Piatti
Yuantao Shi
BDL
35
3
0
05 Feb 2024
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Denoising Diffusion Variational Inference: Diffusion Models as Expressive Variational Posteriors
Wasu Top Piriyakulkij
Yingheng Wang
Volodymyr Kuleshov
DiffM
30
1
0
05 Jan 2024
Energy based diffusion generator for efficient sampling of Boltzmann
  distributions
Energy based diffusion generator for efficient sampling of Boltzmann distributions
Yan Wang
Ling Guo
Hao Wu
Tao Zhou
DiffM
15
3
0
04 Jan 2024
Stochastic Optimal Control Matching
Stochastic Optimal Control Matching
Carles Domingo-Enrich
Jiequn Han
Brandon Amos
Joan Bruna
Ricky T. Q. Chen
DiffM
13
6
0
04 Dec 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
19
40
0
04 Oct 2023
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Francisco Vargas
Shreyas Padhy
Denis Blessing
Nikolas Nusken
DiffM
OT
35
3
0
03 Jul 2023
An optimal control perspective on diffusion-based generative modeling
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
20
78
0
02 Nov 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
132
77
0
02 Oct 2022
Trajectory balance: Improved credit assignment in GFlowNets
Trajectory balance: Improved credit assignment in GFlowNets
Nikolay Malkin
Moksh Jain
Emmanuel Bengio
Chen Sun
Yoshua Bengio
145
165
0
31 Jan 2022
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs
  Theory
Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory
T. Chen
Guan-Horng Liu
Evangelos A. Theodorou
DiffM
OT
170
160
0
21 Oct 2021
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
124
48
0
20 Oct 2020
1