Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2307.02672
Cited By
GIT: Detecting Uncertainty, Out-Of-Distribution and Adversarial Samples using Gradients and Invariance Transformations
5 July 2023
Julia Lust
A. P. Condurache
AAML
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GIT: Detecting Uncertainty, Out-Of-Distribution and Adversarial Samples using Gradients and Invariance Transformations"
4 / 4 papers shown
Title
On the Importance of Gradients for Detecting Distributional Shifts in the Wild
Rui Huang
Andrew Geng
Yixuan Li
192
328
0
01 Oct 2021
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
255
36,362
0
25 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1