ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.02973
  4. Cited By
Pruning vs Quantization: Which is Better?

Pruning vs Quantization: Which is Better?

6 July 2023
Andrey Kuzmin
Markus Nagel
M. V. Baalen
Arash Behboodi
Tijmen Blankevoort
    MQ
ArXivPDFHTML

Papers citing "Pruning vs Quantization: Which is Better?"

10 / 10 papers shown
Title
Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking
Efficient LLM Inference using Dynamic Input Pruning and Cache-Aware Masking
Marco Federici
Davide Belli
M. V. Baalen
Amir Jalalirad
Andrii Skliar
Bence Major
Markus Nagel
Paul N. Whatmough
76
0
0
02 Dec 2024
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
On the Impact of White-box Deployment Strategies for Edge AI on Latency and Model Performance
Jaskirat Singh
Bram Adams
Ahmed E. Hassan
VLM
43
0
0
01 Nov 2024
Predicting Probabilities of Error to Combine Quantization and Early
  Exiting: QuEE
Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE
Florence Regol
Joud Chataoui
Bertrand Charpentier
Mark J. Coates
Pablo Piantanida
Stephan Gunnemann
45
0
0
20 Jun 2024
Effective Interplay between Sparsity and Quantization: From Theory to Practice
Effective Interplay between Sparsity and Quantization: From Theory to Practice
Simla Burcu Harma
Ayan Chakraborty
Elizaveta Kostenok
Danila Mishin
Dongho Ha
...
Martin Jaggi
Ming Liu
Yunho Oh
Suvinay Subramanian
Amir Yazdanbakhsh
MQ
44
5
0
31 May 2024
Learning from Students: Applying t-Distributions to Explore Accurate and
  Efficient Formats for LLMs
Learning from Students: Applying t-Distributions to Explore Accurate and Efficient Formats for LLMs
Jordan Dotzel
Yuzong Chen
Bahaa Kotb
Sushma Prasad
Gang Wu
Sheng Li
Mohamed S. Abdelfattah
Zhiru Zhang
31
8
0
06 May 2024
OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization
OPQ: Compressing Deep Neural Networks with One-shot Pruning-Quantization
Peng Hu
Xi Peng
Hongyuan Zhu
M. Aly
Jie Lin
MQ
44
59
0
23 May 2022
Overcoming Oscillations in Quantization-Aware Training
Overcoming Oscillations in Quantization-Aware Training
Markus Nagel
Marios Fournarakis
Yelysei Bondarenko
Tijmen Blankevoort
MQ
111
101
0
21 Mar 2022
Cyclical Pruning for Sparse Neural Networks
Cyclical Pruning for Sparse Neural Networks
Suraj Srinivas
Andrey Kuzmin
Markus Nagel
M. V. Baalen
Andrii Skliar
Tijmen Blankevoort
25
13
0
02 Feb 2022
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,198
0
01 Sep 2014
1