ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.05610
  4. Cited By
Substance or Style: What Does Your Image Embedding Know?

Substance or Style: What Does Your Image Embedding Know?

10 July 2023
Cyrus Rashtchian
Charles Herrmann
Chun-Sung Ferng
Ayan Chakrabarti
Dilip Krishnan
Deqing Sun
Da-Cheng Juan
Andrew Tomkins
ArXivPDFHTML

Papers citing "Substance or Style: What Does Your Image Embedding Know?"

16 / 16 papers shown
Title
Safer Prompts: Reducing IP Risk in Visual Generative AI
Safer Prompts: Reducing IP Risk in Visual Generative AI
Lena Reissinger
Yuanyuan Li
Anna-Carolina Haensch
Neeraj Sarna
23
0
0
06 May 2025
Benchmarking Image Embeddings for E-Commerce: Evaluating Off-the Shelf Foundation Models, Fine-Tuning Strategies and Practical Trade-offs
Benchmarking Image Embeddings for E-Commerce: Evaluating Off-the Shelf Foundation Models, Fine-Tuning Strategies and Practical Trade-offs
Urszula Czerwinska
Cenk Bircanoglu
Jeremy Chamoux
33
0
0
10 Apr 2025
Pencils to Pixels: A Systematic Study of Creative Drawings across Children, Adults and AI
Pencils to Pixels: A Systematic Study of Creative Drawings across Children, Adults and AI
Surabhi S. Nath
Guiomar del Cuvillo y Schröder
Claire Stevenson
49
1
0
09 Feb 2025
Two Effects, One Trigger: On the Modality Gap, Object Bias, and Information Imbalance in Contrastive Vision-Language Models
Two Effects, One Trigger: On the Modality Gap, Object Bias, and Information Imbalance in Contrastive Vision-Language Models
Simon Schrodi
David T. Hoffmann
Max Argus
Volker Fischer
Thomas Brox
VLM
42
0
0
11 Apr 2024
DreamWalk: Style Space Exploration using Diffusion Guidance
DreamWalk: Style Space Exploration using Diffusion Guidance
Michelle Shu
Charles Herrmann
Richard Strong Bowen
Forrester Cole
Ramin Zabih
AI4TS
DiffM
35
2
0
04 Apr 2024
Visual Data-Type Understanding does not emerge from Scaling
  Vision-Language Models
Visual Data-Type Understanding does not emerge from Scaling Vision-Language Models
Vishaal Udandarao
Max F. Burg
Samuel Albanie
Matthias Bethge
VLM
24
6
0
12 Oct 2023
Probing Graph Representations
Probing Graph Representations
Mohammad Sadegh Akhondzadeh
Vijay Lingam
Aleksandar Bojchevski
26
10
0
07 Mar 2023
Muse: Text-To-Image Generation via Masked Generative Transformers
Muse: Text-To-Image Generation via Masked Generative Transformers
Huiwen Chang
Han Zhang
Jarred Barber
AJ Maschinot
José Lezama
...
Kevin Patrick Murphy
William T. Freeman
Michael Rubinstein
Yuanzhen Li
Dilip Krishnan
DiffM
197
515
0
02 Jan 2023
Enhance the Visual Representation via Discrete Adversarial Training
Enhance the Visual Representation via Discrete Adversarial Training
Xiaofeng Mao
YueFeng Chen
Ranjie Duan
Yao Zhu
Gege Qi
Shaokai Ye
Xiaodan Li
Rong Zhang
Hui Xue
37
31
0
16 Sep 2022
Improving Self-Supervised Learning by Characterizing Idealized
  Representations
Improving Self-Supervised Learning by Characterizing Idealized Representations
Yann Dubois
Tatsunori Hashimoto
Stefano Ermon
Percy Liang
SSL
59
40
0
13 Sep 2022
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
213
1,277
0
02 Sep 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
293
2,875
0
11 Feb 2021
What you can cram into a single vector: Probing sentence embeddings for
  linguistic properties
What you can cram into a single vector: Probing sentence embeddings for linguistic properties
Alexis Conneau
Germán Kruszewski
Guillaume Lample
Loïc Barrault
Marco Baroni
199
876
0
03 May 2018
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
149
9,300
0
28 May 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
279
39,083
0
01 Sep 2014
1